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The methods of evaluating the numerical values of the parameters 
needed for the calculation of the dielectric constant in the Cole-Cole model are 
considered. A distinction has been made between the cases when the 
experimental data include and do not include the maximum value of the 
imaginary part of the dielectric constant. The calculations have been 
performed for two ferrite samples. The results obtained gave a reasonable 
quantitative agreement with the experimental data.    
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Introduction  

The Cole – Cole model [1] has been used successfully to describe the 
experimental data for the dielectric constant of many materials as a function of 
frequency [2 to 6]. In this model the dielectric constant depends mainly on four 
parameters, the static dielectric constant εo, the dielectric constant at infinite 
frequency ε∞ , the relaxation time oτ and an exponent factor α. In principle, εo 

and ε∞ can be experimentally measured and the other two parameters oτ and α 
have to be treated as fitting parameters whose values can be retrieved from the 
best fit to the experimental data. In most of the cases, however, εo and ε∞ cannot 
be obtained directly from the experimental data since it is difficult to perform 
the measurements at very low and very high frequencies and to detect the 
saturated values in the two limits. The present work is concerned with 
presenting a simple method to extract εo and ε∞ from the available 
measurements and to obtain subsequently the other two parameters. 
 
The work is arranged in the following way. In ⇓ 2 a brief summary is given of 
the Cole – Cole model. The present method is displayed in ⇓ 3. Some 
applications are finally considered in ⇓ 4. 
 
Summary of the Cole – Cole model: 

According to this model 
 

ε* -  ε∞ = ( εo - ε∞ ) / [ 1 + ( i ω  oτ )1-α ]   ,            (1) 
where 

ε* = ε` - i ε``  ,              ω = 2 π f    ,                   (2) 
 

f is the frequency, ε` and ε`` are the real and imaginary parts of the dielectric 
constant. The above equation represents an arc of a circle of radius r and center 
(a,-b) in the ε`, ε`` complex plane as shown in Figure (1). In this figure (-ε``) is 
plotted as positive and 



Egypt. J. Sol., Vol. (23), No. (2), (2000) 

 

181

 
 

u =  ε* -  ε∞  ,   v = εo - ε* = u ( i ω  oτ )1-α.           (3) 
Hence, 

| v/u | = (ω  oτ )1-α  ,   Arg v -  Arg u = (1 - α) π/2.   (4) 

 
Evaluation of εεεεo, εεεε∞∞∞∞ from the experimental data: 

In order to obtain εo, ε∞ directly, the measurements have to be carried 
out at very low and very high frequencies so that ε`` vanishes and ε` tends to εo 
and ε∞ respectively. As has been mentioned above the measurements in these 
two frequency limits are not always possible with reasonable accuracy. We thus 
need to extract εo and ε∞ from the measurements in the intermediate frequency 
range. 
 

3.1 The data include the maximum value of εεεε`` : 

We first consider the case when the measurements are performed on 
both sides of the maximum of ε``. The maximum measured value of ε``will be 
taken for simplicity to be the exact maximum value ε``m . We also denote the 
corresponding measured real part by ε`m. It is readily shown from Figures (2a,b) 
that  

εo + ε∞  ≈ 2 ε`m .                                                   (5)                  
 
For each measured point (ε`1, ε``1) on the left of (ε`m, ε``m) we determine a point 
(ε`2, ε``1) on the right of (ε`m, ε``m) by using a linear fitting between the two 
successive measured points (ε`i, ε``i ) , (ε`j, ε``j ), as is illustrated in Figure (2a). 
Thus 

 
ε`2 = ε`i  + (ε``1 - ε``I) (ε`j - ε`i) / (ε``j  - ε``i).         (6) 

 
 
Fig. (1) 
Complex plane (Argand 
diagram) of the dielectric 
constant as given by the 
Cole-Cole model. 
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Fig. (2): (a) Calculation of ε`2 from ε`1(Eq. 6). 

 (b) Calculation of ε`1 from ε`2 (Eq. 7). 
 
 
This procedure necessitates that the data points are very close to each other. 
Moreover, if accidentally (ε`2,ε``1) is a measured point say (ε`i, ε``i) then we do 
not need to use equation (6) since ε`2 is already given from the measurements. 
        

Also, for each data point (ε`2,ε``2) on the right of (ε`m ,ε``m ) we 
determine ε`1 , as shown in Figure (2b), so that 
        

ε`1 = ε`i  + (ε``2 - ε``i) (ε`j -  ε`i) / (ε``j  - ε``i).        (7) 
 
It is then clear from Figures (2a,b) that  
 

εo + ε∞   ≈   ε`1 + ε`2 .                                        (8) 
We thus take 

εo + ε∞   = Average (ε`1 + ε`2 ),                          (9) 
 
where the value 2ε`m should be included in the average on the RHS of equation (9). 
 

We still need another equation to determine εo, ε∞. It can be shown by 
taking the two points (ε`1,ε``) and (ε`2 ,ε``) to lie on the circle that 
 

[(ε`2-ε`1) / 2]2 + ε``2 = - 2 ε``b + [(εo - ε∞) / 2]2         (10) 
 
We can consequently use the least squares method to obtain the best straight 
line which passes through the data points (x, y) where 
 

y =  [( ε`2 - ε`1  ) / 2] 2 +  ε``2 ,    x = ε``.             (11) 
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If “m” is the slope of the obtained line and “c” is its intersection with the y-
axis, then  

b = - m / 2,                                                     (12a) 
 
 and                             εo - ε∞ = 2 c  .                                                (12b) 
 
 Now εo, ε∞ can be obtained from equations (9) and (12b). If either εo or ε∞ are 
measured experimentally then it is enough to use equation (9) to obtain the 
other unknown value. 
 
          After knowing εo, ε∞ the values of α and oτ can be obtained by using one 
of the following procedures: 
 
i - According to equation (4) and Fig.(1) 
 

α = 1- 
π
2

 ( 
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     The value of α and oτ can then be calculated from the above two        
equations for each data point. An average value of α and oτ will finally be 
obtained. 
             
ii – Also from Fig.(1) αααα is given by 
  

α =  
π
2

  tan-1  [2b / ( εo - ε∞ )] ,                           (15) 

       
      where b is obtained from (12a). 
 
iii – It follows from equation (4) that 

ln v/u  = ( 1 - α ) ln ω  + ( 1 - α ) ln oτ .           (16) 
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The above equation implies that the relation between the data points  
y` = ln v/u    and  x` = ln ω  is linear. We thus determine the best straight 
line which passes through the experimental data (x`, y`) and find α, oτ  from 
the slope and intersection with the y`-axis of this line. 
 
3.2 The data do not include the maximum of εεεε``: 

In some cases the measured values of ε`` increases or decreases 
continuously with the frequency. In other words the data do not include the 
maximum point of ε``. Also, in some other cases the number of points on one 
side of the maximum is not enough to perform the above procedure. In these 
cases more complicated approaches have to be utilized. Here we apply the 
following two methods: 
 
          In the first method the data points are divided into three groups. We then 
choose the first point from each group and find the circle which passes through 
the three points. The center (a, -b) of the circle and its radius r are given by  
        

a = 
D2
1

  [S12  (ε``1 - ε``3) –  S13 (ε``1 - ε``2)] ,     (17a) 

 

b = 
D2
1

  [S12  (ε`1 - ε`3) –  S13 (ε`1 - ε`2)]           (17b)           

   
 and                                r = [ ( ε`1 – a )2  +  (ε``1 + b )2 ]1/2 ,                    (17c) 
 
where                              Sij = ε`i 2+ ε``i 2  -  (ε`j

2 + ε``j
2)                           (18a) 

 
and                                 D = (ε`1 - ε`2) (ε``1 - ε``3) - (ε`1 - ε`3) (ε``1 - ε``2).(18b) 
 
We repeat the procedure by taking the next point in each group until all the 
points are used. We then take an average value for the three parameters a, b, r. 
The values of  εo, ε∞ are consequently given by 
 

εo = a + 22 br −  ,  ε∞ = a - 22 br − .           (19) 
 
Also α can be evaluated from equation (15) or equivalently from 
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   α = 
π
2

 sin-1  (b / r).                                          (20) 

 
As regards the relaxation time oτ , it can be obtained by using one of the 
approaches (i) or (iii) considered in ⇓ 3.1. The value of α can be checked by 
using these approaches. 
  

In the second method we fit the whole set of data by using the equation 
of a circle and applying the least squares method. The equation of the circle can 
be taken as 

ε`2  +  ε``2 = 2a ε` – 2b ε`` + C,                       (21a) 
where                              C = r2 – a2 – b2.                                             (21b) 
 
The three parameters a, b, C can then be obtained from the experimental data 
by solving the three equations 
 
 
          ∑ (ε`2  +  ε``2) = NC + 2a ∑ ε` - 2b ∑ ε``, 
 
          ∑ ε` (ε`2  +  ε``2) = C ∑ ε` + 2a ∑ ε`2 – 2b ∑ ε`ε``,                        (22) 
 
  
 
Here N is the number of the data points. Consequently, r can be found from 
(21b). Also, α and oτ can be deduced by using the same procedures applied in 
the first method. 
 
 
 

The two methods considered in this subsection seem to be more 
complicated than the method given in ⇓ 3.1. However, they are more general 
and can be used in any case. 
 

4. Applications: 

A computer program has been prepared to perform the above 
procedures. The calculations have been carried out for the two ferrite samples 
Li0.5-0.5xCdxFe2.5-.5xO4 , x=0.3 and Mg1-xTixFe2-2xO4 , x=0.45. For the first sample, 
the experimental values of ε`, ε`` at T=300K, 470K are taken from Refs. [7, 8] 
and are shown here in Figs. (3, 4). The results obtained are given in Table (1). 
Also, the representation of the input experimental data together with the 
obtained output circle on the Argand complex plane are displayed in Figs. (5, 

∑ε`` (ε`2  +  ε``2) = C ∑ε`` + 2a ∑ε`ε`` – 2b ∑ε``2.
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6). The agreement between the input and output results seems to be quite 
reasonable, in particular for T=470K. 

Table (1) 
The results obtained for Li0.5-0.5xCdxFe2.5-.5xO4, x=0.3, at 

T=300, 470K. The labels I, II 1, II 2 refer respectively to the 
method given in ⇓⇓⇓⇓ 3.1 and to the two methods given in ⇓⇓⇓⇓ 3.2 

 

T(K) Method  εo ε ∞     α  oτ (µ sec)  A B  r  

300     I 
   II 2 

175 
171 

23.1 
20.0 

0.464 
0.484 

 8.57 
11.4 

 98.8 
95.6 

 67.7 
71.8 

102 
104 

470     II 1 
    II 2 

2340 
2440 

23.7 
31.0 

0.423 
0.417 

 60.1 
66.4 

1180 
1230 

 908 
925 

1470 
1520 

 
Fig. (3) 

Experimental values of ε`, ε`` against 
frequency for Li0.5-0.5x CdxFe2.5-.5xO4, 
x=0.3, at T=300K. They are reproduced 
from Refs. [7,8]. The measurements were 
performed on a specimen of thickness 
1.5mm and diameter 8.54mm.     

Fig. (4) 
Experimental values of ε`, ε`` against 
frequency for Li0.5-0.5xCdxFe2.5-.5xO4, 
x=0.3, at T=470K. 

  
Fig. (5) 

Argand diagram of the dielectric constant of 
Li0.5-0.5xCdxFe2.5-.5xO4, x=0.3, T=300K. The 
experimental data are represented by the open 
circles o while the theoretical results (method 
II 2) are represented by the solid circular arc. 
 

Fig. (6) 
Argand diagram of the dielectric 
constant of Li0.5-0.5xCdxFe2.5-.5xO4, x=0.3, 
T=470K. The theoretical results are 
obtained from method II 1. 
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As regards the second sample, the experimental values of ε`, ε`` are depicted in 
Figs. (7, 8) for T=305K, 600K respectively. They are reproduced from the 
results of Ref.[9]. The output results obtained are shown in table (2). The 
Argand diagrams given in Figs. (9, 10) exhibit a good quantitative agreement 
between the experimental and theoretical results. 

  
Fig. (7) 

Experimental values of ε`, ε`` against frequency 
for Mg1-xTixFe2-2xO4, x=0.45, at T=305K. They 
are reproduced from Ref. [9]. The measurements 
were performed on a specimen of thickness 
1.94mm and diameter 10.0mm 
 

Fig. (8) 
Experimental values of ε`, ε`` 
against frequency for Mg1-xTixFe2-

2xO4, x=0.45, at T=600K.  

  
Fig. (9) 

Argand diagram of the dielectric constant of Mg1-

xTixFe2-2xO4, x=0.45, T=305. The experimental 
data are represented by the open circles o while 
the theoretical results (method II 2) are 
represented by the solid circular arc. 

Fig. (10) 
Argand diagram of the dielectric 
constant of Mg1-xTixFe2-2xO4, x=0.45, 
T=600. The theoretical results are 
obtained from method II 1. 

Table (2) 
The results obtained for Mg1-xTixFe2-2xO4, x=0.45, at T=305, 600K. 

 

T(k) Method  εo ε ∞   α 
oτ  (µ sec)  A  b R 

305 
  

   I 
   II 2 

 30.8 
28.9 

9.29 
8.93 

0.491 
0.529 

63.7 
47.9 

20.0 
18.9 

10.4 
10.9 

15.0 
14.8 

 
600 

   I  
   II 1 
   II 2 

97.5 
82.9 
92.5 

15.0 
10.3 
12.7 

0.238 
0.306 
0.284 

 2.51 
 2.38 
 2.59 

56.2 
46.6 
52.6 

16.2 
18.7 
19.1 

44.3 
40.9 
44.2 
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5. Conclusion: 

The results obtained for Li0.5-0.5x CdxFe2.5-.5x O4 , x=0.3 and Mg1-xTixFe2-

2xO4, x=0.45 agree reasonably with the experimental data. Also, the numerical 
values of the parameters that calculated by using different methods are 
consistent. The study confirms, that the Cole-Cole model is an adequate 
approach for the calculation of the dielectric constant of complicated ferrite 
samples. 
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