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In this article a study of the specific heat, energy fluctuation and 
entropy of 1D, 2D, 3D harmonic and 1D anharmonic oscillators is presented. 
The effect on the thermodynamic properties of considering a finite number of 
the quantum states, involved in evaluating the partiton function, is analyzed. In 
the case of the anharmonic oscillator we calculate the contribution of the 
anharmonicity to these properties and compare ( or contrast) with their 
counterparts in the harmonic case. 
                                                                 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



Samy H. Aly 

 

218

Introduction 

The harmonic and anharmonic oscillators are well known to have an 
important place in physics both at the fundamental and practical levels. The 
specific heat of solids, for example, is well explained in terms of the harmonic 
vibrations of the atomic oscillators [1] . Anharmonic contributions, however, to 
the specific heat have been reported [2]. There are, in addition, a number of 
other physical properties which cannot be accounted for using a strictly 
harmonic model. Examples of these in solids are: the thermal expansion, the 
finite thermal conductivity and the temperature dependence of elastic constants 
[1]. The anharmonicity, also, causes the existence of soft modes which provide 
the mechanism for displacive phase transitions [3]. In quantum crystals, the role 
of anharmonicity is even more important for a reasonable description of these 
crystals [4]. In the field of magnetism, the lattice anharmonicity presents a 
mechanism for the phonon-induced contribution to the magnetocrystalline 
anisotropic constants [5].   

 
Recently, the specific heat of several one-dimensional classical and 

quantum potentials was analyzed by Pizarro et al [6]. They showed that the 
classical limit of the specific heat of a 1D simple harmonic oscillator is reached 
at moderate temperatures if a relatively small number of quantum levels 
(<<100) is considered. The specific heats of simple harmonic oscillators of 
two-level, n-level and infinite number of levels were investigated in more detail 
by Styer  [7]. 

 
A guiding motive of the present work is to analyze the effect of 

anharmonicity on the specific heat, energy fluctuation and entropy of a 1D 
anharmmonic oscillator and compare (or contrast) with their counterparts in the 
1D harmonic oscillator case. It is also instructive to study the evolution of these 
properties with increasing the number of quantum states, used in evaluating the 
partition function, of these two different oscillators. 

 
The partition functions of the isotropic 2D and 3D harmonic oscillators 

are simply related to that of their 1D counterpart. Their thermodynamic 
properties (e.g. specific heat and entropy) are, therefore, simply related to those 
of the 1D oscillator. It may be of some pedagogical value, however, to study 
how the dimensionality and the number of quantum states of these n-level 
degenerate  oscillators affect their properties. 

 
In section 2, we present calculations of the specific heat and energy 

fluctuations of n-level harmonic, and anharmonic oscillators of different 
anharmonicity strength. Section 3 presents a study of the entropy of these 
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oscillators in particular their low and high temperature limits. General 
conclusions of this study are drawn in section 4. 
Specific Heat And Energy Fluctuation 

a) The 1D simple harmonic oscillator : 

 The partition function Z1 of this oscillator is well known to be[8]: 
 

     (1)          
 
 
where x = ћωβ and β = 1/kT. 
The specific heat at constant volume, normalized to k, is related to the partition 
function by: 
 

(2) 
         

From now on, for the sake of simplicity, we will drop the subscript ν (which 
stands for the volume) and use the symbol C1, in the text , to mean the specific 
heat at constant volume  normalized to Boltzmann constant k. The low and high  
temperature  limits of C1 are : C1 ≈ x2 e- x  and C1 ≈1 respectively.  

 
Fig. (1) Specific heat of a 1D simple harmonic oscillator for n = 2, 6, 15 

and 50 as function of kT/ћω. 
 
 
Recently [6,7] it has been shown that the high temperature limit of C1 is 

obtained for relatively small quantum numbers (<<100). In Fig.1 we generate few 
specific heat plots using n=2,6,15 and 50. The plot for n=50 is identical to the one 
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generated using the full (i.e. summed from zero to infinity) partition function of 
equation (1). Our calculation is in agreement with those of refs. 6 and 7). 

It is of interest now to compare the specific heat with the relative energy 
fluctuation f defined by: 
 

(3) 
        
                                              

The quantity f measures the thermal stability of the system and is related to the 
specific heat by the equation : 
 

(4)        
 
The low and high temperature limits of equation(4) are f~ e-x/2 and f~1 
respectively. At these two limits C1 is almost identical to f, however for x=1, 
for example, the percentage difference between C1 and f is ~10%. For small 
quantum numbers C1 drops quickly to zero at high temperatures while the 
fluctuation nearly saturates.  

 
b) The 2D and 3D isotropic simple harmonic oscillators: 

It is evident that the partition functions of the 2D and the 3D harmonic 
oscillators have the same temperature dependence as that of the 1D oscillator 
and that the zero-point energies of these oscillators do not, as well, contribute 
to their specific heats. The difference lies in the degeneracy of the energy levels 
of the 2D and 3D oscillators. The energy spectrum of the 2D oscillator is: 
En=(n+1)ħω and the partition function Z2 is easily evaluated to be[8]: 
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Similarly the partition function of the 3D oscillator is (footnote 1): 
 

(6) 
 
 

From Eqs. 5 and 6 it is evident that the specific heats of the 2D and 3D 
oscillators are respectively twice and thrice that of the 1D oscillator. 
 

Unlike the Debye oscillators which have different temperature dependencies in 
their low-temperature specific heats, namely C~Td where d is the 
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dimensionality (d= 1, 2 and 3 for the 1D, 2D and 3D oscillators respectively), 
the Einstein oscillators have the same temperature dependence in their low-
temperature specific heats namely Cd ≈dx2 e- x . 

We have studied the dependence of the specific heat on temperature 
and quantum number n for the 2D and 3D oscillators. The same general 
conclusions regarding the behavior of the specific heat of the 1D oscillator are 
drawn here as well, namely that the specific heat is not saturated for relatively 
low values of the quantum number n but, rather, it develops a peak and drops 
slowly at high temperatures. 

 
Fig. (2) Energy fluctuation as function of kT/ћω for simple 1D, 2D, 3D 

harmonic oscillators. The plots are for different values of n. 
 
 
Fig.2 shows the dependence of the r.m.s. energy fluctuation f on 

temperature for the three oscillators. The r.m.s. energy fluctuation in  the  2D  
and  3D  cases  reach  values  of, 1/ 31/  and  2  at high temperatures, 
respectively [footnote 2] as compared to the value 1 for the 1D oscillator. Thus 
the degree of thermal stability of the harmonic oscillator goes as the square root 
of dimensionality. In the low temperature region, however, the energy 
fluctuation goes as ~ e –x/2. 

 

c) The 1D anharmonic oscillator: 

The Hamiltonian of this oscillator is well known to be: 
 

(7) 
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where H0 is the unperturbed Hamiltonian and λ is a constant which indicates 
the strength of the perturbation. The energy levels are approximately given 
by[9]: 
 

(8) 
 

The partition function Za of the anharmonic oscillator, to first order in A, is 
related to Z1 by[10] (see the appendix): 
 

(9) 
 
where A=3λћ/4m2ω3 is a dimensionless constant which characterizes the 
strength of the perturbation and we may call it the anharmonicity factor. The 
symbols m and ω are the mass and angular frequency respectively. The specific 
heat of the anharmonic oscillator, normalized to k, is related to C1 by: 

 

The term added to C1 in this equation is the contribution, to first order in A, of 
the anharmonicity to the specific heat. For very small values of A one expects 
that Ca ≈ C1. We have found that this contribution is negative providing that A 
<0.04, and that its absolute value increases with increasing A, i.e. the 
anharmonicity diminishes the specific heat of the oscillator. Fig.3 shows the 
dependence of Ca on temperature as calculated from equation (10) for 
A=.001,.01,.02 and .04. 

 
Fig. (3) Specific heat of anharmonic oscillator for A=0.001, 0.01, 0.02 

and 0.04 as function of kT/ћω using equation (10). 
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Larger values of A did not result in generating well -behaved curves. Probably 
one has to consider higher order terms of A in Za. We find it more instructive, 
however, to study also the effect of varying the number of the quantum levels 
on the specific heat of this oscillator and compare (or contrast) with the 
harmonic case. Therefore we use the following partition function:   

   1222
2
1

0

  )xnnA()x(neaZ ∑
∞ ++−+−=          (11) 

 
Fig.4 shows the specific heat as function of temperature for A=0.1 and 

n=2,6 and 15. The behavior of Ca shown in this figure is different from that of 
Fig.1 in the following aspects: firstly, for small quantum numbers the specific 
heat of the harmonic oscillator reaches a maximum then decreases at higher 
temperatures as a consequence of the limited number of the available quantum 
levels. In the anharmonic case, however, the same behavior is observed but 
with a less -steep drop of specific heat at high temperatures. Secondly, the 
specific heat of the harmonic oscillator saturates to the classical value (k) for 
n≥50.  In the anharmonic case the saturation takes place for much less number 
of the quantum states (n~10).  In addition, the saturated Ca is about 0.7 k. We 
have also checked this behavior for n=100 and found that it is identical to the 
case of n=15 shown in Fig.4. The effect of the anharmonicity is appreciable at 
higher temperatures as the mean position of the oscillator moves away from its 
equilibrium position. One, therefore, expects the thermodynamic properties of 
the anharmonic oscillator to reflect this behavior. 

 
Fig. (4) Specific heat of anharmonic oscillator of A= 0.1 for n=2,6 and 

15 as function of kT/ ћω. 
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In addition to the previously mentioned remarks we notice that C1 is 
higher than Ca up to a certain temperature above which Ca exceeds C1. This 
“temperature” for example is x= 0.5, 1.8 and 4.5 for n=2, 6 and 15 respectively. 
In Fig.5 we generated a family of curves for Ca in the case of A=.001, 0.01, 
0.05, 0.1 and 0.2  for  n=10. It is clear from this figure that increasing A leads 
to a tendency of Ca to saturate at high temperatures and that, in the saturated 
state, the specific heat decreases as the anharmonicity increases. 

 
Fig. (5) Specific heat of anharmonic oscillator of A= 0.001, 0.01, 

0.05, 0.1 and 0.2, for n=10 as function of kT/ ћω. 
 
 
It is of interest now to study how the relative r.m.s energy fluctuation f 

changes with temperature and anharmonicity. Fig.6 shows these changes for 
A=0.01,0.05 and 0.1 in the case n=20. For relatively weak anharmonicities 
(~0.01) the fluctuation increases quickly with T then at relatively higher 
temperatures it tends to saturate. On the other hand when A>0.05 the 
fluctuation increases in the entire temperature range studied reaching values 
larger than unity. This demonstrates that the anharmonic oscillator becomes 
less thermally stable at high temperatures. 
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Fig. (6) Energy fluctuation as function of kT/ћω for anharmonic 

oscillator of A = 0.01, .05 and 0.1 for n = 20. 
In terms of the time factor, this means that the anharmonic oscillator 

spends a good fraction of time, at high temperatures in a state where the 
deviation of the energy, from its mean value, is an appreciable fraction of the 
mean energy. 
 

3. Entropy: 

a) The 1D harmonic oscillator:       

The entropy S1 is obtained from the partition function using the 
equation: 

 

 
 
 

Using Z1 from equation 1,we get:      
 

(13) 
 

The high temperature limit of the entropy S1 is: 
          

x S ln11 −≈                                                      (14) 
 

where we will use the symbol S1 from now on instead of S1/k . 
On the other hand, the low- temperature limit of the entropy is: 
 

                                                   (15) 
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Fig. (7) Entropy as function of kT/ ћω for 1D harmonic oscillator for n 

= 2, 5, 10 and 50. 
 
 

The high- temperature limit holds well for x values in the range 0.1 -0.6 
with a relative percentage error<1%. For x>1,however, the percentage error 
is>4%. In the low-temperature limit the relative percentage error in equation 15 
is < 2% for x in the range 7-10, but increases for smaller x values (x<4) to 
>5%. For the purpose of studying the entropy of a 1D harmonic oscillator with 
only limited number of quantum levels we have generated in Fig.7 the 
temperature dependence of the entropy for n=2, 5, 10 and 50. The curve with 
n=50 is almost identical to the curve with n=∞. For relatively small n the 
entropy increases very slowly at high temperatures, while for n>10 it increases 
obeying Eq.14. In the low temperature limit, however, all the curves follow 
Eq.15. 

 
b) The 1D anharmonic oscillator: 

Using the partition function Za we obtain the following approximate 
expression: 
 

 
(16) 

 
 

This expression reduces to Sa ≈S1 as A tends to zero.  
The low temperature limit of Sa is:     
                

(17) 
 

The last two terms of Eq.17 represent the anharmonic contribution to 
the entropy. we have calculated this contribution for x values between 4 and 5 
for different anharmonicity factors and found that this contribution is positive 

{ }
{ }       

x) (AxAx

x) xxAx (
)xAx ( SaS

cosh11
2

coth
2

sinh2

2
2

coth1ln1 −++

−
+−+≈

Ax)(
AxAx)(xxeaS
−

+−+−≈
1

1ln



Egypt. J. Sol., Vol. (23), No. (2), (2000) 

 

227

but only less than 1% of S1 for A=0.01 and increases for larger values of A. On 
the other hand, the high temperature limit is : 

)41(
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                              (18)                 

 

We have calculated the contribution of the anharmonicity to Sa for A between 
0.01 and 0.04 and x in the range 0.2-1. The contribution is found to be negative. 
The negativity decreases with increasing x, i.e with decreasing temperature. In 
other words, the effect of a given anharmonicity on the entropy becomes more 
pronounced as the temperature increases, on the other hand, increasing A 
results in decreasing the entropy. 
 

The effect of anharmonicity on entropy is shown in Fig.8 for 
A=.01,0.05 and 0.1 and n=50. It is clear that the anharmonicity diminishes the 
entropy, in particular at higher temperatures. In order to study the entropy of n-
level anharmonic oscillators, we generated plots for n=2, 5 and 50 and A=0.1 
(Fig.9). The general behavior of entropy in the anharmonic case is similar to 
that of the harmonic oscillator in that the entropy increases very slowly with 
temperature for low-n states  (when x>1). In this case the high-temperature 
limit of the entropy which is equal to k lnΩ, where Ω is the number of the 
microstates, is approached at moderate temperatures. The entropies of the 2D 
and 3D oscillators have the same temperature dependence as the 1D oscillator. 
It is quite clear that S2 = 2S1 and S3 = 3S1. The number of the isoenergetic 
levels in these degenerate systems grows with both the dimensionality and 
quantum number n of the degenerate level. It is also instructive to notice that 
the specific heat plots (e.g. Fig.1), are related to the temperature-derivative of 
the entropy via the relation: CV =T(∂S/∂T)V. This correlation is clear in 
particular for small-n systems. 

 
Fig. (8)  Entropy as function of kT/ ћω for anharmonic oscillator of 

A= 0.01, 0.05 and 0.1 and n=50. 
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Fig. (9)  Entropy for anharmonic oscillator with A=0.1 and n=2, 5 

and 50 as function of kT/ ћω. 

 
 
4.Conclusions: 

1) The specific heat of the 1D anharmonic oscillator reaches its classical 
limit using a number of quantum states less than what is needed for its 
harmonic counterpart to do so. The classical limit of the specific heat 
for the 1D harmonic oscillator is larger. 

2) The effect of the anharmonicity on the specific heat is more pronounced 
at high temperatures. The specific heat diminishes with increasing the 
anharmonicity if a large-enough number of quantum states is made 
available to the oscillator. 

3) The r.m.s. energy fluctuation of the anharmonic oscillator increases with 
increasing the anharmonicity in the high-T region, i.e. the oscillators 
with relatively stronger anharmonicity are less thermally stable.  

4) The contribution of the anharmonicity to the entropy of the anharmonic 
oscillator is larger at higher temperatures. On the other hand the 
entropy reduces as the anharmonicity increases. 

5) The partition function and, consequently, the specific heats, energy 
fluctuations, and entropies of the 1D, 2D and 3D harmonic oscillators 
are simply related through numerical factors which reflects the 
dimensionality of the isotropic 2D and 3D oscillators. 
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Appendix 
 
                
 

 

In the case of very small A one can expand the exponent of equation 
(A1) retaining only terms linear in A: 
        
 
               

 
One may write Za in terms of Z1 as follows: 

 
 
 
 
After few steps one reaches the following expression: 
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Which is equation (9) in the text. 
 
 

Notes: 

1. The derivation of the partition functions of the 2D and 3D oscillators, is 
easily done by evaluating the sum-over- the states. However, one can 
intuitively reach the result because each of the 2D and 3D isotropic 
harmonic oscillators could be considered as two and three independent 
1D oscillators respectively. 

2. The remark here is related to the previous footnote. It is well known that 
the r.m.s fluctuation is inversely proportional to N  , where N is the 
number of particles. 
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