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We have presented a numerical calculation of the excitonic absorption 
spectra in finite parabolic Ga1-x Alx As quantum well of different widths and 
heights. First, we evaluated the exact analytic single particle ground State 
solutions, in terms of Kummer functions as detailed by Wu-Pen Yuen 
[Phys.Rev.B 48, 17316 (1993)], for an electron and a hole. The binding energy 
of an exciton bound to the quantum well structure is then determined using a 
standard variational technique. To investigate the excitonic optical absorption 
near the energy gap, we used a generalized Elliot's formula originally proposed 
by P.Lefebvre, et.al. [Phys. Rev. B 48, 17308 (1993)]. The model is based on a 
simple concept that the exciton confined to a quantum well can be 
approximately characterized by a single parameter, namely the fractional 
dimensional parameter α . Within this model, we include not only bound states 
contribution, but also the effects of  the unbound states, which enhances  the  
continuum absorption above the energy gap. 
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Introduction 

      Since the first fabrication of parabolic quantum wells almost a decade ago, 
[1] there has been a continued interest in these structures. Various experimental 
works concerning these structures have investigated areas such as spin 
dependence transport and optical properties, [2] magneto-plasma modes, [3, 4] 
and size effect. [5] Theoretical studies on the other  hand have  concentrated on 
a  number of  topics  such as single  particle  wave functions, [6] impurities 
centers, [7, 8]  electronic  states, [9, 10]  non - linear optical  rectification, [11]  
and  inter-band optical transitions. [12] The uniformity of the electron gas 
distribution and the intermediate dimensionality between two –dimensional 
(2D) and three–dimensional (3D) have made these structures a possible 
candidate for observing spin–density waves or Wigner crystal phase. [2-4, 10] 
To the best of our knowledge no previous investigation into the dimensionality 
characterization of the parabolic quantum wells have been done. In this work, 
we calculate the dimensional fraction parameter for a range of parabolic wells 
of width from 40 Å up to 300 Å. 

 
Since the formulation by Stillinger [13] of the Laplacian operator within 

fractional dimensional space, many authors have used this Laplacian in the 
kinetic part of the Hamiltonian in quantum well physics problems. [14-16] In 
order to calculate the dimensionality parameter α we followed the simple recipe 
described by Lefebvre et  al. [17] These authors established a one to one 
correspondence between the dimensionality parameter α and the eigen energies 
of an exciton on a quantum well. In this recipe if we can obtain the exciton 
ground nergy E1 by a standard technique (such as the variational method used 
here) then we can write α = 1+2/√ E1 [17]. This relation should be viewed as 
merely an operational definition because α itself is not uniquely defined. 
Dimensionality as given above would be different for different potentials and it 
is not even the same for all eigenenergies belong to the same potential. 
 

In order to determine the exciton binding energy, we utilized the 
Bastard quantum well model. [18] In this model, the trial wave function is 
written as a product of three wave functions. The first two are corresponding to 
the single particle wave function of an electron and a hole in the quantum well. 
The third represents a free exciton whose radius is adjusted as a variational 
parameter. Experiments showed that, the model worked correctly as long as the 
excitonic energy spectrum is coupled with the energy scales of the single 
electron and the single hole. For the intermediate well widths used here        
(40-300 Å) this criteria has been satisfied. Analytically, single particle wave 
function is obtained using a combination between Kummer function and the 
exponential functions as shown in Ref.6.  
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Scope on Our Calculations 
A. Binding Energy 

The exciton bounded in a finite parabolic quantum well with half width 
a=L/2, has a Hamiltonian H given by: 

 
H  = −( ħ2/2µρ) ∂/∂ρ (ρ ∂/∂ρ) − (ħ2/2me )  ∂2/∂z2

e − (ħ2/2mh )  
∂2/∂z2

h  + Ve (z e) + Vh(zh) − ( e2/4πεoεr)(ρ2+(z e −z h)2)-1/2 .           (1) 
 

Here µ = me* m h / (me+mh) is the reduced mass of the exciton, where              
me = 0.067mo, m h =0.34 mo are the effective masses of electron and heavy hole 
respectively. mo =9.109×10-31 kg is the electron rest mass. ε r =13.1 is the 
relative dielectric constant and εo = 8 .854x10-12 As/ (Vm) is the free space 
dielectric constant for GaAs. The first three terms in H represent the kinetic 
energy of the coordinates ρ (relative plane radius), ze, and zh. The potential 
function Ve and Vh as a function of their respective coordinate ze and zh are 
given by 

 
V0e . (ze /a)2 ,               ze<  a 

Ve(z e)  =                                          (2 a) 
V0e ,     ze  > a 

and  
V0h . (zh / a)2,               zh <  a 

Vh(z h) =                   (2 b) 
V0h ,     zh  > a 

 
V0e and V0h are the well heights which can be determined of Al contents in Alx 
Ga 1-x As, and the energy band gap. The last term in H, shows the Coulomb 
potential. We chose the exciton trial envelope wave function as: 
 

ψexc. ( ze , zh , ρ ) = Fe (ze ) Fh ( zh ) e-r /λ                  (3) 
 
where r = [ρ2 + ( ze − zh )2] 1/2. The variational parameter λ is calculated by  
minimizing the expectation value of the exciton Hamiltonian  < H > = <ψexc|H| 
ψexc>/<ψexc|ψexc>. The eigen states Fe and Fh are the solution of Schrodinger 
equation for single particle with an effective mass m, in a finite parabolic 
quantum well of half width a and depth V0: 
 

    - ħ2/2m(d2/dz2) ψ(z) + V0(z/a)2 ψ(z)= E ψ(z)     z≤ a             
    - ħ2/2m(d2/dz2) ψ(z) + V0 ψ(z)= E ψ(z)             z> a.               (4) 

 

Following Ref.(6),we define a normalized parameters and Z=z /a. Equation (4) 
has a solution involves Kummmer function : 
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ψ(Z) = c1 exp(-V∼Z2/2) ϕ (V∼Z2),        Z≤ 1     (4′) 
= c2 exp[ -W∼(Z-1) ].                      Z> 1. 

 
where ϕ (V∼Z2) is Kummer function (b,c,V∼Z2). The parameters are calculated 
by using the following relations (6): U∼2 = 2ma2E/ ħ2, V∼2 = 2ma2V0 / ħ2, b = (1-
U∼2/ V∼) / 4, c = 0.5, and W∼ = [V∼2 − U∼2 ]1/ 2. 
The continuity of the wave function and its derivative at the boundaries, give 
the following transcendental equation: 
 

2ϕ′ (V∼) − (1 - W∼ /V∼) ϕ (V∼) = 0.                      (5)  
                       
Solving equation (5), for both electron and heavy hole separately, with m= 
me,V0=V0e,  and m = mh,V0=V0h respectively. The eigen values of equation (5), 
corresponding to Ee and Eh.  
 

The first three terms in <H> are contributed by kinetic energy 
components of the exciton and are given by the integral I1: 

I1 = (h2 /2µ) ∫∫∫ Fe
2(ze) Fh

2(zh)(ρ ⁄ λr)2 e-2 r/ λ  ρ dρ dze dzh  

+(h2 /2me) ∫∫∫ Fh
2(zh) e-2 r/ λ[ Fe

’(ze)– (ze - zh)Fe(ze)/λr  ]2 ρdρdzedzh 

+(h2/2mh)∫∫∫Fe
2(ze) e-2 r / λ[Fh

’(zh)+(ze - zh)Fh(zh)/λr]2 ρdρdze dzh .   
(6) 
 
The remaining three terms representing the potential energy are contained in the 
integral I2 : 
 

I2 =  ∫∫∫ Fe
2 (ze) ve(ze) Fh

2(zh) e-2 r/ λ ρdρ dze dzh  
+ ∫∫∫ Fe

2 (ze) v h(zh) Fh
2(zh) e-2 r/ λ ρdρ dze dzh  

-(e2 /4πεrεo)  ∫∫∫ Fe
2(ze)  Fh

2(zh) e-2 r/ λ (1/r) ρdρ dze dzh .        (7)   
                         

all integrals have to be evaluated numerically using a Gaussian quadrature 
algorithm. The integrations over ze and zh are carried out from -∞ to ∞ but  
integrations over ρ from 0 to ∞. Thoroughly, the excitonic binding energy (Eb) 
given by, 
 

Eb =Ee+ Eh- min <H> .                                              (8)  
 

Having Eb, enabled us to find the value of the fractional-dimensional α for the 
parabolic well, from the equation [17] , 
 

Eb= R*y / [n+(α-3)/2]2                                              (9) 
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Here, we used n=1, and the effective Rydberg R*y =(µ Ry/mo εr
2) =4.44 mev 

While Ry =13.6 ev.  
 

Figure (1.a and b) displays 
the variation of both the 
exciton binding energy Eb (in 
the units of effective Rydberg 
R*y) and the unitless fractional 
dimensional parameter α as a 
function of well width L (in 
Å). As shown in both figures 
the binding energy Eb 
increases and α decreases with 
increasing of the quantum well 
depth (or the Al content x in 
Ga1-xAlxAs barrier region). But 
we notice that for small values 
of L (less than 75 Å) changing 
x  from 0.15 to 0.35 does not 
vary Eb and α much. In other 
words, varying x by 0.2, at the 
narrow parabolic quantum 
well, causes no considerable 
change in the exciton binding 
energy. From the other hand, 
we see that at well width = 90 
Å, the greatest descrapency 
between Eb values at the three 
different values of x is 
considerable. It can be said, 
that the change in the binding 
energy is almost the same in 
wider wells.  
 

As a check of our analytical model, we presented Fig. (2). In this figure, 
we plotted the experimental [19-20] values of an exciton binding energy in a 
square well. At the same time, we calculated the binding energy of our exciton 
in a parabolic quantum well, but with the same parameters (electron, heavy hole 
masses and Al contents) as the square wells in reference [16]. The solid line in 
Fig. (2) shows our results, the filled squares represent the data given in Ref.[20], 
and the filled triangles indicate another experimental data of square well given 
in Ref. [19]. As it is clear from the figure, we notice that our results are 
qualitatively in a good agreement with the experimental ones. That is to say the 

Fig. [1]: a) The exciton binding energy as a function 
of the well width, at three different value 
of the well depth, represented here by x 
(Al concentration). b) The dimensional 
Parameter α Vs the well width. 
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exciton binding energy of an 
exciton in a parabolic and in 
square quantum wells, 
decreases with increasing the 
well size. 

 

At different values of (Al 
concentration x), we obtained 
an experimental results of 
heavy holes binding energy in 
a square quantum well. We 
stated our results using a 
parabolic quantum well with 
the same parameters as the 
square well used in measuring 
the experimental values from 
Ref. [21], in Table (1).  

 
 

Table (1): Comparison between the experimental 
(square well)and calculated(parabolic) Eb values. 

Well Width       
(Å) 

Al content 
x 

Expt. Eb square well
  (mev) 

Eb Eqn.(8) 
(mev) 

75 0.4 11.2 10.6 
82 1.00 13.0 13.3 
92 0.35 10.1 9.3 

112 0.35 … 8.5 
 
Again we notice that the same behavior of decreasing the binding energy with 
increasing well width. 

 

B- Optical Density 

Consider the problem of a light beam incident perpendicularly to the 
plane of a quasi 2-D medium. This is the standard configuration for the quantum 
wells [22-23]. In this configuration a strong discontinuity of the electric field 
across the plane occurs, which cannot be described by the usual gradual 
exponential decay of the field. From this point of view, the “absorption 
coefficient” available in the literature [22-23], is rather an overall optical density 
of the medium, which is, in fact, the dimensionless quantity measured 
experimentally, as the logarithmic attenuation of light. On the other hand, if the 
light propagates along the plane of a quantum well or along the growth axis, a 

 
Fig. (2): Exciton binding energy variation with well 

width. Solid line represents our parabolic 
quantum well binding energy. The filled 
triangles and squares represent 
experimental values of the square well  
from ref.(19) and ref.(20), respectively 
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classical definition remains possible. The optical or spectral opacity -of the 
sample then involves the distance crossed by the beam. This situation is 
physically important, since it corre-sponds to the propagation of photons in 
solid-state lasers. 

 

The capacity is calculated by accounting for the effective thickness 
along which the light interacts with the electronic states of the system. This 
thickness, Lc, in case of finite well potentials, is a little bit smaller than the well 
width. 

 

The general formula, for the excitonic may be considered α 
dimensional, is giving by generalizing Elliott’s formula [24, 17]: 

 

O(hω)=Oo{∑∞
n=1 [R*

yΓ(n+α−2)/( n-1)!(n+(α-3)/2)α+1 ]δ( hω−En)     
+Γ[(α−1)/2+iγ]2 eπγ γ2−α Y(hω)/2α π2−α/2Γ( α/2)},               (10) 

                
where Y(hω ) is the Heaviside step function ,γ=(R*y/ E)½  and Γ (x) is a gamma 
function.  

 

Oo ={22α-1 ωdcv2 (Γ(α/2))2 Γ((α−1)/2)/π(α−3/2) nb cR*
y}* 

{aαo L2-α
c (Γ(α−1))3},                                                                                 (11)                 

 

nb is the refractive index in GaAs (n b =3.2),c is the speed of light,  the Bohr 
radius ao = (ε r mo a b /µ )=123.75 Å , and ab=0.529 Å |d cv|2 is the square matrix 
element of the electric dipole moment at critical point, where |d cv| =e ∫ ψ*exc |ze-
zh| ψexc dψexc. The last two equations [17] are more general than expression due 
to He [25] expression (replaced the absorption of the continued exciton states 
by the - dimensional interband absorption coefficient). 

 

To account for the finite lifetime of exciton, Eqn. (10) must be 
multiplied by some broadening function. We used Lorentzian shape, with half 
width at half maximum B = 0.5. The measurable optical density is given by: 
 

Otot (hω) = (2π)-1/2∫O(hω-E)[  B/π( E2 + B2 )] dE,  (12) 
 

where O(hω ) is given in Eqn. (10), by replacing En by our previous results Eb, 
and the integration over E is carried out from -∞  to +∞.  

 
 
 
 
 
Figure (3 a and b) show the calculated total optical density, Eqn. (12), 

at three different parabolic quantum well width. The three curves in each figure 
have the same broadening parameter B=0.5, and the same Al concentration 
x=0.15, 0.25 and 0.35. 
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Fig. (3): The total optical density of the parabolic quantum wells Vs the photon energy 

in R*
y. The three curves stand for: I) x = 0.15, II) x = 0.25 and III) x = 0.35. 

 
 

Generally, in parabolic quantum wells we can tell that the total optical 
density increases by Al concentrations increasing. Also, the shift of the optical 
density peak is a noticeable one at small well width (Fig.3-a). 

 
Again, as in the binding energy change Fig. (1-a), the shifts in the peak, 

almost, are the same at well width higher than 75 Å. A word in order can be 
said, from Fig. 3.a, we get the change in α (∆α), equals to 0.1, if we go from 
curve I to curve III, i.e., ∆x = 0.2. But, in Fig. 3-c, ∆α ≈ 0.2 with, ∆x = 0.2, as 
we expected before (Fig.1-b). 
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Consequently, at large values of α, the total optical density will 
decrease, with almost equal shifts in the total optical density peak, at well width 
greater than 75A. Our results, qualitatively, are in a good coincidence with the 
previous results of the square well [17]. 
 
Conclusions 

           We have extended the concept of the fractional- dimensional spaces to 
the parabolic quantum well structures. This concept, allows quite good 
treatment for the optical density spectra due to Wannier- Mott excitons in 
parabolic wells. Since the finite parabolic quantum well has wide applications 
the present work is valuable for the understanding of the designing for the cases 
where the structure is used, especially, for the optical density spectrum in 
electro - optical modulators. 
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