
Egypt. J. Sol., Vol. (25), No. (2), (2002) 229

 
 
 
 
 
 

Application of Artificial Neural Networks 
 to Predict the Carbon Content and the Grain Size 

for Carbon Steels 
 

A. M.  Abdelhay  
 

Production Engineering Department 
 Faculty of Engineering, University of Helwan, Helwan,  

Cairo 11792-Egypt. 
Email : Abdelhay1953@yahoo.com  

 

 
Neural networks and generic algorithms are two branches of artificial 

intelligence that can provide many benefits in engineering applications. The 
artificial neural networks (ANN) technologies provide on-line capability to 
analyze many inputs and provide information to multiple outputs, and also, 
have the capability to learn or adapt to changing conditions. No doubt that the 
determination of either of the carbon content or the grain size of  carbon steel is 
a time consuming process; which involves a quite tedious work. This paper 
examines the feasibility of using an integration system  between some measured 
ultrasound parameters; from nondestructive test (NDT), and a pre - learned 
ANN to  facilitate the determination of grain size and carbon content for the 
tested samples. The results showed that grain size and carbon content of carbon 
steels can be well predicted using a trained neural networks, with  an 
acceptable degree of errors and great reliability.  
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A.M. Abdelhay 230

Introduction: 
Grain size of the material is an important engineering characteristic; 

which influences its properties. Traditionally, optical metallography technique 
is used to evaluate the grain size of the materials. Such commonly used 
technique is quite a time consuming and feasible only at representative locations 
of the material.  But, the new trend is to use non-destructive testing (NDT). This 
NDT is widely applied in many applications due to the fact that it will not 
impair the future usefulness of the test object.  

 
In a previous work by the author [1], efforts had been made to use 

longitudinal normal incident ultrasonic waves as a non destructive evaluation 
(NDE) technique for the estimation of the average grain size of carbon steels. 
By using statistical methods of regression - type, the results showed a great 
dependency of some ultrasound parameters upon the grain size of the tested  
microstructures. Instead of using longitudinal ultrasonic, Rayleigh surface 
ultrasonic waves were extensively used [2-4] to measure surface/subsurface 
grain size in polycrystalline materials. 
 

Neural networks have seen an explosion of interest over the last few 
years [5-9], and are being successfully applied across an extraordinary range of 
problem domains, in areas as diverse as finance, medicine, engineering, geology 
and physics. Indeed, anywhere that there are problems of prediction, 
classification or control, neural networks are being introduced. This sweeping 
success can be attributed to a few key factors. The first factor is that neural 
networks are very sophisticated modeling techniques capable of modeling 
extremely complex functions. In particular, neural networks are nonlinear. For 
many years linear modeling has been the commonly used technique in most 
modeling domains since linear models have well-known optimization strategies. 
Where the linear approximation was not valid, which was frequently the case, 
the models suffered accordingly. The second factor is that neural networks also 
keep in check the curse of dimensionality problem that bedevils attempts to 
model nonlinear functions with large numbers of variables. The third and final 
factor is the easiness  of use, where neural networks can learn by example. The 
neural network user gathers representative data, and then invokes training 
algorithms to automatically learn the structure of the data. The biggest problem 
for the application of neural networks technique is the selection of its 
independent variables inputs, topology and the connection weights. 
 

This works tries to demonstrate the great practical capability of artificial 
neural networks (ANN) to be used not only as a tool for grain size prediction, 
but also to evaluate the percentage carbon content of the tested samples. Data 
used for inputs of the ANN are nondestructively measured ultrasound 
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parameters. This proposed technique can be a better practical  alternative 
procedure for the statistical technique, previously used by the author [1]. 
 
2.  Theoretical Background Approach 

In an effort to determine which of independent variable are going to be 
used as the  predictor inputs to the ANN topology, the following sub-section 
highlights these variables. Also, this section introduces some of the ANN main 
concepts.   
 
2.1  Ultrasound  Predictors 

Consider the reflection and transmission of ultrasound stress wave 
along the interface boundary A-B as schematically shown in Fig. (1). Using a 
coupling medium at the interface; such as petroleum gel, produces an acoustic 
matching impedance [10], so a complete transmission of the incident ultrasound 
stress or pressure waves exists. Also, at the probe-specimen interface boundary, 
continuity assumption can be held true for the propagation of the ultrasound 
stresses waves. 
 
Ultrasound stress ( or pressure) continuity states: 

 
σ σ σi r t+ =              (1) 
 

where σi, σr , and σt  are the incident, reflected, and transmitted ultrasound 
stresses respectively.    
The frequency - dependent terms can be written as [10]: 

 
σ ω

n n
j t k xP e= −( )

              ( n = i, r, t )       (2) 
 

where Pn  =  the amplitude of the ultrasound stress wave σn, 
ω   =  the stress wave circular frequency, 
 k  = the wave number  (k =  [ω / V], V is the propagation sound 

velocity),  
t and x = the time and distance traveled by the ultrasound stress 

wave in material respectively. 
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Fig. (1):  Schematic diagram showing the pulse - echo signal, and the multiple 
reflection echoes  from the back wall of a tested specimen. 

 
 
The substitution of these terms; Eq. (2), into Eq. (1) yields 

 
P P Pi r t+ =          (3) 
 

The reflection coefficient (R), can be defined in terms of the ultrasound stress 
wave amplitudes as: 

R
P
P

r

i
=

         (4) 
 

The above equation is written as a ratio, since the absolute amplitudes  
Pi and Pr are of little interest in nondestructive evaluation (NDE).  In the present 
work, the reflection coefficient (R), is going to be used as an index measure for 
the grain size of the tested specimens. As shown in Fig. (1), the amplitude (Pn) 
of the ultrasound stress wave can be assumed to be proportional to the pulse-
echo heights (i.e Hn) ; which is measured in millivolt units. 
Thus; Eq. (4) is going to be applied as: 

 

R H
Ho

1
1=  and R

H
H2

2

1

=                     (5) 

 
The second quantitative predictor, which  variables are going to be used in the 
prediction of the grain size of the tested specimens, is the attenuation coefficient 
an. This ultrasonic parameter an, is widely used to characterize material 
properties [3, 11-13], and is explained in more details in previous work [12]. 
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Such attenuation coefficient is calculated as follows: 
 

a
L

Log H
Hn

n

n

=
+

20 ( )
1

 dB / mm      (6) 

 
where Hn and Hn+1 are two consecutive amplitudes for the pulse - echo 
ultrasound wave signal- as shown in Fig. (1). While L, is the total traveled 
distance (i.e twice the thickness of test specimen) for the ultrasound stress wave. 
 

Finally, a third predictor variable can be used for the indication of grain 
size (S) and the amount of carbon content (C), is the propagation ultrasonic 
velocity (V); which is determined as the average velocity as follows: 

 

V L
T

=               m/sec        (7) 

 
where T (in sec units)  is the time period  between two consecutive echoes of 
the ultrasonic pulses, and L (in m units) as defined above. 
 

2.2  Neural Networks 

Artificial neural networks (ANNs) offer the potential to resolve a 
number of the problems encountered in different applied engineering fields. 
ANNs have been proposed as alternatives to the statistical analysis methods 
[8,9]. 

An artificial neural network consists of a collection of processing 
elements that are highly interconnected and transform a set of inputs to a set of 
desired outputs. The result of the transformation is determined by the 
characteristics of the elements and the weights associated with the 
interconnections among them. By modifying the connections between the nodes 
the network is able to adapt to the desired outputs. 

 
The neural network gains the experience initially by training the system 

to correctly identify pre-selected examples of the problem. The response of the 
neural network is reviewed and the configuration of the system is refined until 
the neural network's analysis of the training data reaches a satisfactory level. In 
addition to the initial training period, the neural network also gains experience 
over time as it conducts analyses on data related to the problem. 
 
2.2.1  Neural Network Description 

A simple network has a feedforward structure; where signals flow from 
inputs, forwards through many hidden units, eventually reaching the output 
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units. A typical feedforward network is shown in Fig. (2), it has neurons (or 
nodes) arranged in a distinct layered topology. The input layer is not really 
neural at all: these units simply serve to introduce the values of the input 
variables. The hidden and output layer neurons are each connected to all of the 
units in the preceding layer. Again, it is possible to define networks that are 
partially-connected to only some units in the preceding layer; however, for most 
applications fully-connected networks are better. 

 

INPUT 
LAYER 

HIDDEN 
LAYER(S) 

OUTPUT 
LAYER 

 
 

3.  Experimental Work 

3.1  Test Samples 

Four different kinds of plain carbon steel (i.e. C15, C22, C35, and C45)  
were used in this work.  Six samples  were cut from each steel kind to a length 
of approximately 10 mm. These round samples; with flat ends, were annealed. 
Range of annealing temperatures were from 850oC to 1050oC with 50oC 
increment. These different annealing temperatures were sufficient to impose 
different grain sizes.  

 

Test specimens were then prepared for  microstructure examination by 
optical microscope. From the micrographs, the average grain size was 
determined, by using the line intercept technique [14]. Thus a total of 24 
different microstructures with different grain sizes were obtained (see Fig. 3b). 
3.2  Ultrasonic Evaluation 

A single 10 MHz ultrasonic transducer (Krautkramer-Type) with a 
sensitivity diameter of 5mm was mounted on each test sample as shown in Fig.  
4.  The ultrasonic waves from the transmission/reception (T/R) transducer were 
digitized and stored to a PC computer for later wave analysis by Wave Star (Ver 

Fig. (2):  Artificial Neural network (ANN) topology.
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2.1) package. For each acquired ultrasound  wave, as the example shown in Fig. 
(3a), the  first, second, and  third  echo amplitudes (H1, H2, and H3), were 
determined. Also, the time period for the first two 

 

 
 

   (a)          (b) 
Fig. (3).  A record (a) for the ultrasound wave image, and (b) its corresponding tested 

specimen microstructure (specimen no. 42).   
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. (4):  Instrumentation used to measure ultrasonic waves parameters. 
echoes was recorded. Using the average of three readings and Eqs. 5, 6, and 7; 
the five independent  predictor variables; namely: the coefficient of reflections 
(R1 and R2), the attenuation coefficients (a1 , a2), and the ultrasound velocity 
(V), can be defined for each test specimen, as shown in Table1. This data set 
was used as a training data, while an additional six readings were taken for 
some randomly selected test specimens to be used later as a validating data  set.  
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4.  Ann  Implementation: 

Once, all the potential  predictor variables (i.e. independents, inputs:  R1 
, R2 , a1, a2, and  V), were numerically defined for each test  sample, together 
with their  known outputs of grain size (S), and carbon content (C), the training 
of the neural network was ready to be carried out. Thus, the neural network had 
five input variables, and two 
  

Table (1):  Training and testing data 

Specimen Ultrasound Measured Parameters Material 
Characteristics

ID. a1 a2 R1 R2 V C S 
111 0.09371 0.341312 0.818182 0.481481 5914.149 0.15 23 
121 0.026641 0.046407 0.932458 0.885312 5976.409 0.22 25 
131 0.041094 0.065784 0.901575 0.847162 5975.443 0.35 32 
141 0.068235 0.752114 0.853933 0.175439 6026.987 0.45 35 
211 0.098675 0.151621 0.807692 0.720238 5884.194 0.15 28 
221 0.008626 0.050591 0.981308 0.895238 6041.335 0.22 31 
231 0.030469 0.085067 0.934211 0.826962 5969.231 0.35 36 
241 0.056683 0.214119 0.878788 0.613793 5937.031 0.45 38 
311 0.000863 0.085174 0.998124 0.830827 6714.032 0.15 33 
321 0.019202 0.054775 0.962264 0.896078 6137.566 0.22 35 
331 0.027777 0.06224 0.942553 0.875847 5920.201 0.35 38 
341 0.031598 0.044687 0.930841 0.903614 6304.141 0.45 42 
411 0.071153 0.374354 0.871429 0.484778 6109.091 0.15 36 
421 0.133707 0.442017 0.716024 0.331445 5920.873 0.22 44 
431 0.218039 0.443423 0.616016 0.373333 5787.106 0.35 46 
441 0.070339 0.287329 0.851852 0.519451 6055.046 0.45 49 
511 0.264776 0.215093 0.565502 0.629344 5945.946 0.15 41 
521 0.126844 0.469549 0.746717 0.339196 5925.926 0.22 46 
531 0.195911 0.231549 0.631206 0.580524 5930.233 0.35 50 
541 0.058076 0.218947 0.881288 0.621005 6009.539 0.45 52 
611 0.056623 0.068231 0.882353 0.861021 5944.272 0.15 43 
621 0.299324 0.375477 0.534091 0.455319 6066.667 0.22 50 
631 0.257964 0.311091 0.61012 0.540084 5982.609 0.35 55 
641 0.382543 0.562704 0.421801 0.280899 6105.919 0.45 57 
13 0.032425 0.044013 0.921657 0.896039 6008.351 0.35 32 
22 0.031015 0.072558 0.934976 0.854815 6041.335 0.22 31 
33 0.037022 0.05821 0.924303 0.883589 5907.451 0.35 38 
44 0.125616 0.289903 0.765573 0.521234 6079.887 0.45 49 
51 0.102244 0.116817 0.825742 0.786162 5971.479 0.15 41 
64 0.17044 0.341366 0.421801 0.280899 6012.775 0.45 57 
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dependent outputs. A commercially available ANN software called  “Easy NN 
Ver 8.01" was used for the  purpose of this work. This ANN software utilizes 
the multilayer perception (MLP) architecture shown in Fig. 2; which consists of 
one input layer, one output layer, and at least one hidden layer. A feedforward 
neural network architecture was selected based on the flexibility and 
applicability of the approach in a variety of problems [5 - 9]. The number of 
hidden layers, and the number of nodes in the hidden layers, can be manually 
selected or optimized by the ANN package. Each of the hidden nodes and the 
output node applied a Sigmoid transfer function of the form (1/(1 + exp (-x))) to 
the various connection weights. 

 
Several ANN models were studied to examine the effects of reducing 

the number of predictor inputs, and changing the number of hidden layers upon 
the general prediction error of the proposed model.  Table 2. Lists the different 
ANN models tested together with their configurations.  In Table 2., the (x) and 
(-) indicate, respectively, whether the predictor at the top of the column is fed to 
the ANN model or not. 

 
To evaluated the feasibility of each trained ANN model, the 

normalized root mean square error value (NSE) was used. Two NSE 
values were computed, one  for the predicted value of the carbon content 
( NSEC) and the second value for the  grain size (NSES). The NSE is 
defined as follows: 
 

NSE x x
x

o= −∑

∑

( )2
2          (8) 

 
where x can be the carbon content C or the grain size S, when computing 
the corresponding  NSE value. When calculating the NSE, the value xo 
represents the predicted output value for the carbon content or the grain 
size. 

Table (2):  Different configuration for the tested ANN models. 
 

ANN Active Input Combination ANN 
ID a1 a2 R1 R2 V Topology 
A x x x x x 5 x 7 x 2 
B - x x x x 4 x 5 x 2 
C - x - x x 3 x 5 x 2 
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D - x - - x 2 x 5 x 2 
E - - - - x 1 x 4 x 2 

AA x x x x x 5 x 7 x 3 x 2 
BB - x x x x 4 x 5 x 3 x 2 
CC - x - x x 3 x 5 x 3 x 2 
DD - x - - x 2 x 5 x 2 x 2 
EE - - - - x 1 x 4 x 2 x 2 

 

5.  Results And Discussion: 

All proposed ANN models - listed in Table 2- were trained, using 
the 24 training examples of Table 1., for a target learning error of 0.04, a 
learning rate of 0.6, and with a learning momentum of 0.6. Three of these  
ANN models (i.e. A, AA, and C) are shown in Fig. (5). The ANN model 
“A” shows a strong correlation between the ultrasound parameters in the 
following descending order:  

 
a2  ⇒  R2 ⇒   V ⇒  R1 ⇒   a1   ⇒  R1 

 
This partially implies that the velocity of ultrasonic waves is strongly 
related to the amount of carbon content and to the grain size of the tested 
samples. Also, the ANN-model “A” indicates that both of the second 
attenuation coefficient and coefficient of reflection (i.e. a2 and R2) are 
more sensitive to the predicted material characteristics than the first 
corresponding coefficients (i.e. a1 and R1). This observation can be 
attributed to that the second reflected echo is suffering more accumulated 
loss in ultrasound energy and absorption than the first ones; which in turn 
can be more valuable in the process of prediction of carbon content and 
grain size for the tested material. 
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( a ) ANN model “A” - with  [ 5 x 7 x 2 ]  Topology. 

 

 
(b ) ANN model “AA” - with  [ 5 x 7 x 3 x 2 ]  Topology 

 
( c  ) ANN model “C” - with  [  3 x  5 x 2 ]  Topology 

Fig. (5):  Some examples for the proposed ANN -model configurations. 
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In a trial to reduce the number of input predictors ( Notice that ANN-
model  “A” uses  5 inputs), different ANN-models were trained using the same 
training data set of Table 1. Once, the model was trained, the validating data set 
of Table 1 was introduced to the trained ANN - model, and predicted values for 
the carbon content and grain size were used in Eq. (8) to compute  both of the 
normalized root mean square errors NSEC and NSES for the carbon content and 
the grain size respectively.   
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Fig.  (6):  Normalized  error for different tested ANN models. 
 

 
Results are shown in Fig. (6), and it can be seen that the “C”- ANN 

model is having the lowest overall values for the NSE. The topology of the  “C” 
- model is shown in Fig. (5c)., it only uses the three most strongly related 
predictors  a2 ->  R2   -> V; which can be seen in Fig . (7).  Such strongly related 
predictors can be sufficiently enough and mostly capable  to be experimentally 
used  in the prediction of carbon content and grain size of plain carbon steels 
with great success.  

 
Individual measured values for both the carbon content and the grain 

size were compared with the prediction values  of the “C” - ANN model,  are 
shown in Fig. (8). 

 
Computed relative prediction error for the carbon content was found to 

be 25 percent (Fig. 8a), while it was 2 to 19 percent for grain size (Fig. 8b). The 
reason that prediction error for carbon content was high; is that the values for 
such predicted output is not a continuous variable function (i.e  0.15⇒ 0.22 ⇒  
0.35 ⇒ 0.45 stepwise values), so any deviation from the correct value will 
cause high error in the prediction of carbon content. 
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Fig. (7):  Relative importance of the predictor inputs of  “C” - ANN model.  
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Fig. (8): Comparison between measured and predicted ANN values for carbon content 
and grain size for Plain carbon steel specimens, using the “C” - ANN model . 
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Conclusion: 

A technique was developed, which is applicable to the prediction of the 
average grain size and the carbon content of plain steel. The proposed technique 
is based on non-destructive evaluation procedure of using some selected 
ultrasound parameters, namely the coefficient of reflection (R1 , R2), the 
attenuation coefficient (a1, a2), and the ultrasonic velocity (V). As the ultrasound 
parameters were fed to an artificial neural networks, the best estimate values for 
the grain size and carbon content were predicted.  
The most reached results were: 
 

 The best proposed ANN - model, based on minimum normalized root 
square error was having  a network of 3 x 5 x 2 architecture,  

 Three ultrasound parameters (i.e. a2, R2, and V) were sufficient as predictor 
inputs for the proposed ANN model, 

 Relative importance of the ANN model predictor in a descending order 
was: a2, R2, then  V, 

 Relative prediction error  in the range of 2 to 19 % was found in the 
prediction of grain size, and up to 25 % for the prediction of carbon 
content, for the randomly selected specimens. 

 
Thus, the proposed technique can be  effective means of an integrated 

system of NDE and ANN; which may be extended to other engineering 
materials, and would be an interesting study to pursue. 
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