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The self-suppression and both symmetric and asymmetric cross-

suppressions of the gain of longitudinal modes have been analyzed in InGaAsP 
lasers emitting in wavelength of 1.55 µm based on a third-order perturbation 
approach. We compared the influences of such suppression effects of gain on 
the time variations of the mode intensities and the associated output spectra. 
Such study was based on numerical integration of the laser rate equations in a 
multi-mode model. Based on intensive simulations of mode dynamics, we 
explored the operating regions of the single- and multi-mode operations over a 
long scale of the strength of the asymmetric gain suppression. The results 
showed that the competition among the modes induces normal multimode 
operation under self suppression, single-mode operation in the central mode of 
the gain spectrum under symmetric cross-suppression, and single-mode 
operation with jumping of the lasing mode to the long-wavelength side of the 
spectrum under asymmetric gain suppression. When the asymmetric gain 
suppression is enhanced, transient multi-mode switching is stimulated showing 
asymmetric multi-mode output spectra in good correspondence with 
experimental results. 
 

1. Introduction: 

Fiber-To-The-Home (FTTH) networks emerge as an attractive 
technological target of many nations and are driving the optical communication 
systems into rapid developments. InGaAsP lasers emitting in wavelength of 
1.55 µm are the most attractive light sources in such systems because they 
correspond to minimum loss as well as zero dispersion in dispersion-shifted 
optical fibers. When designed with Fabry-Perot (FP) cavities, these lasers are 
desired for low-cost subscriber networks because of their simple structure. 
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However, unmodulated FP-InGaAsP lasers were observed to exhibit 
asymmetric emission profile associated with asymmetric multi-mode output 
spectra [1-4]. These characteristics indicate strong gain nonlinearity of the 
longitudinal modes, which causes suppression of the gain of modes under the 
threshold gain level due to increase of their intensities [5,6].  

 
The gain nonlinearity is caused by mode-coupling effects which 

originate in phase synchronization of the electric fields of modes with the 
electronic dipoles [5,7]. The mode coupling adds self- and cross-modal 
suppressing terms to the gain of each mode proportional to intensities of the 
modes. The influence of this type of cross-suppression is symmetric on the gain 
spectrum [5-7]. On the other hand, interaction of the electric fields of modes 
with the injected carriers may cause vibration of the carriers in the beating 
frequency of the modes, which contributes also to mode coupling [8-10]. Such 
type of coupling adds another suppressing cross-modal term to the mode gain 
but with asymmetric influence on the gain spectrum, that was observed in 
experiments [4,11]. The asymmetric gain suppression has been predicted to 
pronounce in lasers with a large linewidth enhancement factor such as the case 
of InGaAsP lasers [12,13]. Due to these mode coupling and gain nonlinearity, 
mode-competition phenomena are generated in the mode dynamics towards 
approaching the threshold gain and dominating the lasing process. Such 
competition is controlled by the coefficients of both the self- and symmetric and 
asymmetric gain suppression effects [8,9,12-14]. When the asymmetric gain 
suppression is weak, the mode competition is dominated by a single mode 
resulting in a single-mode output spectrum. Under strong asymmetric gain, the 
competition phenomena are enhanced stimulating complicated mode dynamics, 
such as temporal switching by several modes, which results in time-averaged 
multimode-like output spectra [12]. 
 

The aim of this paper is twofold. First we aim to present fundamental 
characterization of the nonlinear gain suppression effects in 1.55 µm InGaAsP 
lasers. For this purpose, we applied the fundamental analysis of gain 
suppression developed by Yamada and Suematsu based on the density-matrix 
approach [5]. The second aim of our work is to introduce detailed investigations 
of influences of the nonlinear suppression effects of gain on the mode-
competition phenomena and the modal operation. The investigations were 
introduced in terms of time variations of the mode intensities and the associated 
time-averaged output spectra. The analysis in this paper is based on numerical 
integration of multi-mode rate equations of the modal photon numbers and the 
injected electron number.  

This paper is structured as follows. In the next section, we present 
analysis of nonlinear gain in InxGa1-xAsyP1-y/InP lasers emitting in the 
wavelength of 1.55 µm. In Section 3, we introduce theoretical multi-mode 
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model of analysis of laser dynamics based on the characterization of gain 
obtained in Section 2. In Section 4, we present results of simulating the 
influence of nonlinear suppression effects of gain on the time variations of 
mode intensities and the output spectra. We also demonstrate a schematic map 
for regions of single- and multi-mode operations of the laser under different 
strengths of the asymmetric gain suppression and injection levels. Finally we 
conclude our work in Section 5.    
 
2. Nonlinear gain in semiconductor lasers 
     2.1. Modified theory of third-order perturbation of gain 

The phenomenon of gain suppression is characterized in this paper 
based on the third-order perturbation approach of nonlinear gain developed by 
Yamada and Suematsu in the density matrix analysis [5]. This approach takes 
into account the intraband relaxation processes of electrons which control 
broadening of the gain spectrum. We introduced modification to such analysis 
to consider transitions between the light-hole band and the conduction band in 
addition to the transitions from/to the heavy-hole band.  

 
Variation of the electric field component E(r,t) in the laser cavity is 

described in general by the following wave equation deduced from Maxwell's 
equations: 
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where P is the electronic polarization induced due to interaction of the field 
with dipole moment formed by an injected electron in the conduction band and 
a hole in the valence band of the active region. ε and µ are the dielectric 
constant and magnetic permeability in the active region, respectively. In a 
multimode model of analysis, the electric field is expressed as, 
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mmm +Φ= ∑ ω        (2) 

where )(~ tEm  is a slowly time-varying amplitude of the field of mode 
Mm ±±±= ,....,2,1,0  that vibrates in an angular frequency ωm. )(rmΦ  is the 

mode spatial distribution function and is characterized inside the laser cavity by: 
( ) 0)( 22 =Φ+∇ rmm µεω         (3) 
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By substituting the filed expression (2) as a solution of Eq. (1) assuming 
harmonic time-rotation of P, the following equation for time evolution of the 

field intensity 
2

)(~ tEm  is obtained: 
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where gm is the gain of mode m and is calculated in terms of the induced 
polarization P as, 
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The time interval ( )mt ω1≈∆  is introduced to obtain the time-averaged 

value with respect to the optical frequency. c is the speed of light in vacuum and 
nr is the refractive index in the active region whose length is L and volume is V. 
In Eq. (5), gth is the threshold level of gain and Cm is the contribution of the 
spontaneous emission into the resonant mode m.  

 
The polarization P is calculated quantum mechanically as the 

expectation value of the dipole moment operator R [5]. Due to mathematical 
complexity of the analysis, a closed form can not be derived for P unless several 
approximations are followed, such as homogenous broadening of gain and a 
plane-wave picture of the field [7,15]. Alternatively, P has been calculated by 
applying perturbation approaches in terms of the electric field in the statistical 
density matrix analysis [5-7,15]. The modal gain gm is then given by the 
expansion, 
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where the even-order terms vanish due to the off-diagonal nature of the dipole 
moment operator. It has been proved that the contributions of the expansion 
terms of gain higher than the third order are negligible and can be ignored 
within the normal operation of lasers [15]. The first- and third-order gain 
coefficients are calculated by the following equations [5]: 

  ∫ Φ=
V
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∫ ΦΦ=
V
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where g(1) and g(3) are material gain coefficients independent of the laser 
geometry. The forms of these coefficients given in [4] are modified to: 
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where abba ωωω hhh −=  is the energy difference between level b in the 
conduction band and level a in the valence band. The summation in the above 
equations are to take into account the electron transitions between the light-hole 
band (j=ℓ) and heavy-hole band (j=h) and the conduction band. The functions 
fcj(ħωba) and fvj(ħωba) are Fermi-Dirac distribution functions in the conduction 
and valence bands, respectively and gcvj(ħωba) is the joint density of states. 
These functions are determined by the quasi-Fermi levels µc and µv in the 
conduction and valence bands, respectively as well as the effective mass at the 
conduction band mc and the effective masses at the light-hole and heavy-hole 
bands mvl and mvh, respectively. Forms of these functions can be found in [16]. 
Dependence of the dipole moment Rab on the photon energy is described by the 
equation [17]: 
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where ∆ is the spin-orbit splitting in the valence band and e is the electron 
charge. In this perturbation model, the density of electrons n is given by: 
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2.2. Numerical calculation of gain coefficients in 1.55 µm InGaAsP lasers 
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The above theoretical model was applied to calculate the spectral 
characteristics of the material gain coefficients g(1) and g(3) in InxGa1-xAsyP1-

y/InP lasers emitting in wavelength of 1.55 µm. The compositions x and y 
corresponding to this emission wavelength are 0.93 and 0.436, respectively 
which correspond to band gap energy of Eg=0.783 eV and wavelength 
λg=hc/Eg=1.585 nm, refractive index nr=3.0, spin-orbit splitting energy of 
∆=0.321 eV, and effective masses mc=0.0437me, mvh=0.431me and 
mvℓ=0.058me with me as the electron rest mass [18]. The relaxation times τin, τc 
and τv are assumed equal and set as 0.1 ps. The procedures of calculation of g(1) 
and g(3) and their dependence on the electron density n were as follows. First the 
quasi-Fermi levels µc and µv were determined from the condition of electrical 
neutrality: 
 

[ ] [ ] 0)( 1)( )(1)()( )( =−+−+∫
∞

ba
E
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g

ωωωωωω hhhhhh l
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for pre-specified values of the operating voltage between the junction planes 
Vop, which is related to the difference µc-µv by 

 
( ) eV vcop µµ −=        (15) 

 
The calculated values were then used to calculate the density of electrons n via 
Eq. (13) and the corresponding material gain coefficients via Eqs. (10) and (11). 
The Simpson's Composite algorithm was applied to calculate the above integrals 
numerically [19]. The upper limit of the integrals is determined by the photon 
energy baωh  at which the integrand becomes divergent. 

 
Figure 1(a) plots the wavelength ( ωπλ c2= ) profile of the linear gain 

coefficient g(1) at an injection level of n=1.052x1024 m-3. Both the broadening 
and tail of the linear gain g(1) shown at wavelengths gλλ <  come from the 
intraband relaxation introduced by the Lorenzian spectral distribution that 
characterizes the gain expression (10). The laser most likely oscillates in the 
longitudinal mode of wavelength close to the peak wavelength λpeak of the gain 
profile. The increase in the injected electron density n causes nearly linear 
increase of the peak value of gain )1(

peakg , as plotted in Fig. 1(b). By employing 

these dependencies of g(1) on the photon wavelength λ and the electron density 
n, g(1) can be approximated with the following simple parabolic function in the 
vicinity of the gain peak [5]: 
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( )( )2)1()1(
peakgpeak bnngg λλ −−−=                   (16) 

 
Fitting of this expression to the calculated gain is shown in Fig. 1(a). The first 
term of the above expression counts for amplification of light by stimulated 
emission, whereas the second term represents the loss by stimulated absorption 
characterized by the transparency electron density ng that corresponds to onset 
of light amplification. The third term contributes to the parabolic dispersion of 
g(1). Definitions and calculated values of the fitting parameters )1(

peakg  ng, and b 
are given in Table 1. By assuming mode q as the main oscillating mode with a 
wavelength coinciding with the peak of the linear gain profile (λq=λpeak), we 
calculated the third-order gain coefficient g(3) via Eq. (11). The obtained spectral 
profile is plotted in Fig. 1(a) on the right and top axes. As the figure shows, g(3) 
peaks around the central mode m=q, but decreases rapidly and symmetrically on 
both sides of the peak. The peak value of g(3) also changes linearly with n, as 
shown in Fig. 1(b) on the right axis. Therefore, the third-order gain coefficient 
g(3) is fitted around the central wavelength by the simple relation [4]: 
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Table (1): Definitions and numerical values of fitting parameters characterizing 

linear and nonlinear gain coefficients in 1.55 µm FP-InGaAsP lasers. 
 

Symbol and definition Numerical value Unit 

Slope of linear gain with n:  )1(
peakg  9.321x10-20 m2 

Injected electron density at transparency: ng 8.855x1023 m-3 
Injected electron density characterizing nonlinear the 

gain: ns 
6.746x1023 m-3 

Absolute value of the dipole moment: Rcv
2 9.522x10-57 C2m2 

Dispersion parameter of the linear gain: h 8.173x10-5 m-3Å-2 

 
The fittings are displayed in Fig. 1(a) and (b). The calculated values of the 
fitting parameters ns and 2

cvR  are also given in Table 1. By assuming uniform 
well-designed index guiding structures, the injected electron density n has 
uniform spatial distribution in the cavity and the transverse modes are limited to 
the fundamental one [5]. Therefore, the spatial integrations in Eqs. (8) and (9) 
can be evaluated and the modal gain coefficients are then given as [5] 
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Fig. (1): Characteristics of the material linear gain g(1) and third-order gain g(3): (a) 

wavelength spectrum when the electron density n=1.052x1024 m-3, and (b) 
variation of the peak values )1(

peakg  and )3(
peakg  with n. Fitting of g(1) and g(3) 

by expressions (16) and (17) are given with dashed lines. Variations of 
)1(

peakg  and )3(
peakg  with n are well fitted with straight lines. 

where ξ is the field confinement factor along the transverse vertical direction. 
The gain is then described by the expression: 
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The second term indicates self-suppression of the gain of mode m due to 

increase in its intensity 
2~

mE , whereas the third term indicates cross-

suppression due to increase in intensity of the other modes q≠m. )3(
)(mmg  is then 

called the self-suppression gain coefficient, whereas )3(
)(qmg  is called the 

symmetric cross-suppression gain coefficient since it gives similar gain 
suppressions for wavelength differences of  λm-λq and λq-λm. It is clear from 
Eqs. (19) and (20) that )3(

)(qmg  is larger than )3(
)(mmg , which then originates in the 

spatial guiding of the lasing field in the cavity.  
 

In addition to the symmetric type of gain suppression, the oscillating 
modes exhibit an asymmetric-type of gain suppression. This type originates in 
vibration of the injected carriers in the beating frequencies of the lasing modes, 
which adds a new suppressing term to the gain expression. The form of the 
coefficient of such gain suppression as predicted by Yamada is [10] 
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where the coefficient '
cH  is a constant depending on the geometry and material 

parameters of the active region. Equation (22) indicates that the asymmetric 
gain coefficient asym

nmg )(  is inversely proportional to λq-λm and works to suppress 

the lasing gain for the modes on the short-wavelength side: 0)( >asym
qmg  for 

λm<λq, but works to enhance the lasing gain of the modes on the longer 
wavelength side: <asym

qmg )(  for λm>λq. As equation (22) reads, the effect of asym
nmg )(  

is pronounced at high injection levels. This type of gain suppression may 
explain the asymmetric gain spectral profile around the main mode observed in 
experiments [11]. 
 

 

Equation (21) of the suppressed gain is then re-written as: 
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Calculation of spectra of the suppressed modal gain gm at a given injection level 

I then requires determination of the intensity of the modal field 
2

)(~ tEm . This 

task is achieved by simultaneous integration of the rate equations (5) in addition 
to a rate equation for the injected electron density n. This analysis is illustrated 
in the next section. 
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3. Multimode Rate Equations of Semiconductor Lasers 

It is convenient to change the system of rate equation (5) of the modal 
field intensity to equations for the modal photon number Sm(t). These physical 
quantities are interrelated by: 
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which then re-writes Eq. (5) in terms of the electron number N=nVI  as [13]: 
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where Gm is the gain per unit time of mode m, and is described by the 
convenient form [12,13]: 
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where Am , B, Dm(q) and Hm(q) represent the coefficients of linear gain, self-
suppression, symmetric cross-suppression and asymmetric cross-suppression, 
respectively, and are given by: 
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0 83 VacH c ξπαλ≈ , with α defining the linewidth enhancement factor, 

is a constant measuring strength of the asymmetric gain Hm(q) and will be used 
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as a parameter to vary Hm(q) in this paper. The second term in Eq. (25) represents 
the rate of coupling of the spontaneous emission into the lasing mode m. 
Dynamics of the oscillating modes are described by the system (25) of rate 
equations of Sm(t) combined with the following rate equation of the injected 
electron number N [5]: 

 

e
INSA

dt
dN

sm
mm +−−= ∑ τ

 .                        (32) 

 

where τs is the electron lifetime due to spontaneous emission. In the present model, we 
assume that the mode m=0 coincides with the center of the spectral profile of gain, i.e., 

peakλλ =0 . The modes with indices m>0 are assumed to lie on the long-wavelength 

side of the central mode, while the modes with m<0 lie on the shorter side. That is, 
 

λλλ ∆+= mm 0                                                     (33) 
 

where Lnr
2
0λλ =∆ , with L being the cavity length, is the mode wavelength 

separation.  
 
4. Simulation of Spectral Profiles of Gain and Laser Output 
     4.1. Procedures of numerical calculation 

The rate equations (25) and (32) of the modal photon number Sm(t) and 
electron number N(t), respectively, are numerically integrated by means of the 
fourth-order Runge-Kutta technique. The integration step is set as short as 
∆t=10 ps, which is short enough to provide fine resolution of the time 
trajectories of Sm(t). We counted a large number of 15 modes (M=7), i.e., 15 rate 
equations of Sm(t), in order to gain satisfying insight of the competition 
phenomena among the oscillating modes. The integration is carried out over a 
period of T=200 ns. The spectrum of the laser output is calculated in terms of 
the averaged values mS  of the modal photon number over the period T. A 
single-mode oscillation is decided when the photon number ratio of dominant 
mode to the strongest side mode nearly exceeds 20 dB. The contribution of 
nonradiative recombination processes, such as Auger recombination, to the 
lasing process in this long-wavelength laser is introduced in terms of the 
lifetime τs as [20]: 

NBeffs =τ1                                                          (34) 
 

where Beff is the effective rate of spontaneous emission by both radiative and 
non-radiative recombination, and is set as Beff=3.782x10-16/V s-1. The cavity is 
assumed to have the dimensions of 300µmx5.0µmx0.12µm. The threshold gain 
level is set as Gth=(c/nr)gth=2.72x1011 s-1 and the confinement factor is ξ=0.2.  
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4.2. Influence of gain suppression on mode competition and laser output 

In this subsection, we illustrate dependence of intensities of the 
longitudinal modes on the gain suppression effects: namely, self-suppression, 
symmetric cross-suppression, and asymmetric cross suppression. These analyses 
are achieved here by comparing the simulation results of the time variations of 
the modal photon number Sm(t) and the associated output spectra calculated by 
including and ignoring the corresponding gain coefficients in the rate equations 
(34). Fig. 2(a)-(h) plots such results when I=1.6Ith: Fig.2(a) and (b) corresponds 
to the case of counting the linear gain only (i.e., B=Dm(q),Hm(q)=0), Fig.2(c) and 
(d) corresponds to the case of ignoring the cross-gain suppression (i.e., 
Dm(q)=Hm(q)=0), Fig.2(e) and (f) corresponds to ignoring the asymmetric cross-
suppression (i.e., Hm(q)=0), and Fig.2(g) and (h) corresponds to the case of 
counting all types of gain suppression with Hc=1.5x10-13 ms-1. Figure 2(a), (c), 
(d) and (e) concerns with time variations of Sm(t), while Fig. 2(e), (f), (g) and (h) 
concerns with the spectra of the gain Gm and the laser output.  

 

Figure 2(a) shows that after the region of relaxation oscillations, which 
ends after time less than t=5 ns, the central mode m=0 dominates the 
instantaneous mode competition. When t=15 ns, the side modes are well 
suppressed except the modes 1±=m  which still compete with the dominant 
mode m=0 even when the photon numbers Sm(t) of the modes reach the steady 
state operation at t=60 ns. Under steady-state operation, the dominant mode 
carries 73% of the total photon number S , while each of the modes 1±=m  
carries 8.6% of S , which can be seen in the output spectrum Fig. 2(b). Since 
the photon number ratio in this case is dB20dB5.810 <=±SS , the laser is said 
to oscillate in multi-mode. This multi-mode operation is understood in terms of 
the gain spectrum shown by the right axis in Fig. 2(b). Although the central 
mode attains the highest gain approaching the threshold level Gth, the gain 
spectrum is so homogeneous and its suppression is shallow around its center 
that the neighbor modes 1±=m  have gain 1±G  close to G0 and then attain high 

photon numbers 1±S . 
 
Fig. 2(c) shows that counting the self-suppression gain, i.e. B≠0, makes 

the instantaneous mode competition as week as the ratios of the photon numbers 
of the dominant mode m=0 to the side modes 3,2,1 ±±±=m  are not large. The 
oscillating modes reach the steady-state operation faster in this case: after about 
5 ns. This steady-state multi-mode oscillation is indicated also in the output 
spectrum shown in Fig. 2(d). The homogeneous spectral regime of the gain 
spectrum shown in Fig. 2(d) becomes wider than the case of Fig. 2(b) 
promoting the gain of the side modes 3,2,1 ±±±=m  which consequently have 
larger photon numbers.  
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Influence of the symmetric cross-suppression of gain Dm(n), which 

corresponds to Hm(n)=0, is illustrated in Fig. 2(e) and (f). Fig. 2(e) shows that 
the central mode m=0 dominates the mode competition and the laser reaches the 
steady-state operation as early as t<12 ns. The laser output is mostly contained 
in the central mode indicating a single-mode operation which is confirmed by 
the output spectrum in Fig. 2(f); dB 30/ 10 >±SS . These results are attributed 
to the influence of Dm(q) to suppress the gain of modes symmetrically on both 
sides of the central mode with amounts larger than its self-suppression.  

 
It is worth to note that both the gain and output spectra in Fig. 2(b), (d) 

and (f) are symmetric with respect to the central mode due to the symmetric 
spectral shape of Am and Dm(q). That is, the photon numbers mS ±  with m≠0 have 
similar values for the same mode number m. This character is no longer 
exhibited when the asymmetric cross-suppression of gain Hm(q) is included in 
the modal gain, as shown in Fig. 2(g) and (h). Several features characterize the 
time variations of the modal photon number Sm(t) shown in Fig. 2(g); (1) the 
steady-state operation begins after t>25 ns, (2) the mode m=+1 neighbor to the 
central mode m=0 on the long-wavelength side becomes the dominant mode,(3) 
the central mode is well suppressed by the instantaneous mode competition after 
t=10 ns, whereas the mode m=+2 is well suppressed after t=20 ns but is still the 
strongest side mode, and (4) the modes on the short-wavelength side of the 
central mode are well suppressed in earlier times. These results are reflected at 
the output spectrum shown in Fig. 2(h), where the mode m=+1 has the highest 
photon number 1+S . This photon number exceeds 36 dB of that of the strongest 
side mode m=+2, indicating single-mode operation. The corresponding gain 
spectrum shown in Fig. 3(h) is asymmetric showing that the gain of the 
neighbor modes on the longer side of the central mode m=0 are enhances, while 
the gain of modes on the shorter side is suppressed. Due to such influence of the 
asymmetric gain, the gain of mode m=+1 approaches the threshold level Gth at 
expense of the central mode m=0 which then becomes a suppressed side mode. 
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Fig. (2): Simulation results of (a), (c), (e) and (g) time variations of the photon 
numbers Sm(t) of the most dominant modes, and (b), (d), (f) and (h) the 
spectra of the laser output and suppressed gain under counting the linear 
gain only, ignoring the cross-gain suppression, ignoring the asymmetric 
cross-suppression and counting all types of gain suppression, respectively 
when I=1.6Ith. The laser oscillated under a single mode when the cross-
suppressions are considered with jumping of the lasing mode to the long-
wavelength side when the asymmetric gain suppression is counted. 
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We extend the above discussion on influence of the gain suppression on 
the laser output to cover the entire investigated range of injection current: 
I=0.9~3.0Ith. The results are shown in Fig. 3(a)-(e), which plots the current 
dependence of the steady-state photon numbers mS  of the most dominant 
modes when B=Dm(q)=Hm(q)=0, Dm(q)=Hm(q)=0, Hm(q)=0, Hc=1.5x10-13 ms-1, 
respectively. Under the threshold current Ith, the four figures indicate multi-
mode operation of the laser. The current range over which the multi-mode 
operation varies with the type of the gain-suppression included in the rate 
equations. This multi-mode operation extends over the entire current range: 
I=0.9~3.0Ith when Dm(q)=Hm(q)=0. The upper current of this range decreases 
from I~2.4Ith when B=Dm(q)=Hm(q)=0 to I~1.44Ith when Hc=1.5x10-13 ms-1 to 
I~1.36Ith when Hc=0. Except for the case of counting the asymmetric gain 
suppression, Hc=1.5x10-13 ms-1, the central mode m=0 attains the largest photon 
number. As Fig. 3(d) shows, inclusion of the asymmetric gain suppression 
causes jumping of the single-dominant mode from the central one to the 
neighbor modes on the long-wavelength side m=+1 and +2 when I=1.4 and 
2.45Ith, respectively. This phenomenon of mode jumping occurring with 
increase of the current has been observed in experiments [11] and predicted in 
theory [8-10]. 

 
4.2. Influence of asymmetric gain suppression 

Interesting features of the laser output are seen when the asymmetric gain 
suppression is pronounced. The instantaneous mode competition becomes so strong 
that the modes do not reach steady-state operations; instead several modes on the 
long-wavelength side of the central mode exhibit instantaneous switching. This is 
seen in Fig. 4(a), which plots the time variations of the modal photon number Sm(t) 
when Hc is increased to 3.0x10-13 ms-1 and I=2.4Ith. The four modes m=0,+1,+2, +3 
and +4 participate in the switching (or hopping) phenomenon. The switching occurs 
first by the central mode m=0 followed by the other modes in the order of the mode 
number, and then returns back to the central mode. Such rotation of the lasing mode 
among the switching modes is repeated regularly. The rotation frequency of the 
lasing mode as well as the number of switching modes depends  on  the  strength  
of  the  asymmetric  gain suppression. Such effects can not be simulated when 
few longitudinal modes are counted in the simulation model. The corresponding 
spectra of the suppressed gain Gm and the time-averaged photon number are shown 
in 
Fig. 4(b). The figure indicates a hole-burning effect in the vicinity of the central 
mode of the gain spectrum which exhibits also a high degree of asymmetry. The 
figure indicates also an asymmetric multi-mode-like output spectrum. These 
characteristics are in good correspondence with the spectra observed in experiments 
[3]. Since the characteristics and origins of these multi-mode spectra are different 
from those dominating the near-threshold regime, this operation is called hopping 
multi-mode [12]. 
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Fig. (3): The time averaged photon numbers mS  of the most dominant modes over the 
current range I=0.9~3.0Ith when (a) counting the linear gain only, (b) 
ignoring the cross-gain suppression, (c) ignoring the asymmetric suppression, 
and (d) counting all types of gain suppressions, respectively. The operation is 
mostly multi-mode in (a) and (b) when the cross-suppressions are ignored. 
The laser oscillates in the central mode m=0 under symmetric gain 
suppression, whereas the lasing mode jumps to modes m=+1, +2 and +3 with 
increase of I when the asymmetric gain suppression is counted 
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Fig. (4): Characteristics of oscillating modes under strong asymmetric gain suppression: 
Hc=3.0x10-13 ms-1 when I=2.4Ith: (a) variations of Sm(t) the photon numbers of 
the most dominant modes m=0, +1, +2, +3, and +4, and (b) the corresponding 
spectra of the laser output and suppressed gain Gm. Fig. (1) indicates transient 
switching among the modes, and Fig. (b) indicates strong asymmetry with hole 
burning in vicinity of the center of the gain spectrum as well as asymmetric 
output spectrum. 
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In order to light up the influence of the asymmetric gain suppression on 
operation of InGaAsP lasers, we did intensive investigations on variations of the 
time trajectories of the modal photon numbers Sm(t) with strength of the 
asymmetric gain suppression Hc over wide range of current thII 0.3~9.0= .  
The results were used to plot the (I-Hc) diagram of laser operation shown in Fig. 
(5). The lower limit, Hc=0, corresponds to symmetric gain suppression. The 
figure indicates many typical features of dependence of laser operation on the 
asymmetric gain suppression and current: (1) the laser operates in normal multi-
mode when injected little above the threshold current Ith at injection current I 
near the threshold (up to I>1.35Ith) over the entire range of Hc, (2) the single 
mode oscillation dominates for operation with small and  moderate  values  of  
Hc, (3) the increase in Hc causes shift of the lasing mode towards the long-wavelength 
side and entrance to region of hopping multi-mode operation, (4) the laser operation is 
dominated with the hopping multi-mode operation when the asymmetric gain 
suppression is enhanced. Enhancement of the asymmetric gain suppression Hm(n) is 
achieved either by moderate values of Hc associated with high injection current I 
(example is Hc=2.25x10-13 ms-1 and I>2.46Ith) or large values of Hc (example is 
Hc>3.75x10-13 ms-1), as indicated by Eq. (30). The operation with moderate values of 
Hc may correspond to InGaAsP lasers with quantum-well structures, while the large 
values of Hc may characterize lasers with conventional cavities [21]. 

 

 
Fig. (5): Schematic map (I-Hc) of operation of 1.55 µm InGaAsP lasers. The lower 

limit, Hc=0, corresponds to symmetric gain suppression. The laser operates 
in normal multi-mode when injected little above Ith. (up to I>1.35Ith). The 
single mode oscillation dominates for operation with small and moderate 
values of Hc. The increase in Hc causes jumping of the lasing mode towards 
the long-wavelength side. The laser operates in hopping multi-mode under 
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high Hc. 
5. Conclusions: 

We presented intensive investigations of influences of the nonlinear 
gain suppression on the mode intensities and modal operation in 1.55 µm 
InGaAsP lasers. Both self- and cross-suppression effects of modal gain were 
characterized. We introduced a schematic map of laser operation over wide 
ranges of the strength of the asymmetric gain suppression and injection current. 
The obtained results indicated that: 
 
(1) The laser oscillates in multi-modes if injected near the threshold level.  
(2) The self-gain suppression induces multi-mode operation, whereas the 

symmetric cross-suppression induces operation only in the central mode of 
the gain spectrum.  

(3) Weak or moderate asymmetric gain suppression causes single-mode 
operation with the lasing mode jumping to the long-wavelength side of the 
central mode 

 
Strong asymmetric gain induces transient switching among several 

modes on the long-wavelength side of the gain spectrum resulting in 
asymmetric output spectra. 
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