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The nonlinear barrier potential with bound states is presented. The 

equilibrium density matrix of a particle moving at temperature T in this 
nonlinear barrier potential field is determined. The exact density matrix is 
compared with the result of the path integral approach in the semiclassical 
approximation is found to be sufficient at high temperatures while at low 
temperatures the fluctuation paths may have a caustic depending on 
temperature and end points. Near the caustics, the divergence of the simple 
semicalssical approximation of the density matrix is removed by a nonlinear 
fluctuation potential. For opaque barriers, the improved semiclassical 
approximation is compulsory  required. 

 

1. Introduction: 
 
 The semiclassical approximation to quantum mechanical problems is 
useful in large field. In chemistry and physics this approach becomes more 
prevalent for many reasons. For instance, semiclassical methods are efficient for 
the calculation of highly excited states, for which direct quantum mechanical 
calculations become difficult. The semiclassical approach also offers conceptual 
insights into the dynamic of many systems that are not easily extracted directly 
from the quantum mechanical treatment [1]. Finally, physical quantities of 
systems with barrier potentials can be calculated in semiclassical limit that 
corresponds to a large barrier height or large barrier width [2&3]  
et al. 1995. A system with a nonlinear potential field that has a barrier and an 
adjacent will be discussed. For the specific potential field considered, the 
classical equation of motion can be solved exactly. Therefore, the model can be 
used to test the quality of approximation to which one has to resort for most 
realistic potential fields. 
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 It has been noted already for more than 2 decades that classical path 
methods offer facile techniques to determine the semiclassical approximation of 
the equilibrium density matrix [4&5]. 
 
 The semiclassical approximation for the density matrix studied in the 
past [6-11] for Eckart potential only, gave an exact solution at high temperature 
and failed to give a good explanation for low temperature. 
 
 This paper shows that simple semiclassical approximation for the 
density matrix of a given potential becomes exact at high temperature, however 
for coordinates near critical values divergence arise when the temperature is 
lowered. In this region, one has to improve  the simple semiclassical 
approximation and evaluate the non-Gaussion fluctuation integrals. 
 

A. Path Integral and Semiclassical Approximation: 

 The dimensionless coordinate representation of the equilibrium density 
matrix of a quantum particle moving in potential V(x) may be written in an 
imaginary time path integral, [12&13] as 
 
 
 
Here, the functional integral is over all paths    
                                                                          Each path is weighted by its 
Euclidean action(Berry et al ,1972;Miller ,1977). 
 
 
 
 
 To evaluate the path integral in semiclassical expansion one can first 
determine the maximum of the weighting factor that is the minimum of S[x]. 
This is given by the classical action S[xcl], where xcl is the classical path solving 
the classical equation of motion following from Hamilton’s principle 
  
 If there exists a set         of classical trajectories in V(x), this procedure 
must be performed for each         , and all contributions are summed to yield the 
semiclassical density matrix.  
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where                                         is the determinant describing the 
Gaussian integral over the quantum fluctuations ([12). Jα is given by the product 
of given values              of the second order variational operator:    
 

as 
  
 
where N is an appropriate normalized constant. As long as the Second order 
variation operator is positive definite, i.e. 0>Λ n   for all n, the Gaussion 
approximation gives the leading order fluctuation term. But a problem arises if 
one of     ’s eigen value tends to zero, then the quantum fluctuations of this 
mode become arbitrarily large and simple semiclassical approximation breaks 
down. Generally, the vanishing of an eigen value defines a point where new 
minimal action paths in the potential V(x) become possible. This is well-known 
as the problem of caustics. For this purpose, another representation  equivalent 
to Eqn. (4) is used. One find [1&3]. 
 
 
 
 
This way the semiclassical approximation is completely determined by  the 
classical path.  
 
B. Classical paths: 

 Consider the 1-dim barrier potential given by  
  
 
 
 
 
 
as shown in Fig. (1), and the classical equation of the motion for 0<ε <α2 is 
 

 
(7) 

 
 
where ε is the Euclidean energy of the system and considererd to be equivalent 
to η²  
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Therefore, the classical path for a given V(x) can be obtained by integrating this 
equation which gives x(τ)  as in table (1). 
 
Table (1): The solution of the classical equation of motion for  
                a given V(x) and 
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Fig. (1): The variation of V(x) versus x. 
 
 
The parameter η² of the solution are determined by the boundary condition: 

)()0( βxx = ,where β is a time required to complete one cycle; One 
expects that there are may be more than one trajectory connecting the end points 
for a given inverse temperature and “time” β. These trajectories contribute to the 
semiclassical approximate of the equibrium density matrix. One can find β for 
this solution: 
 
 
 
i.e,  

 
                                                                                             (9)   

 
 
where θo is an arbitrary angle corresponds to τo = 0 and θ is an angle of motion. 
 
However, β is required for at least one solution (named βc) 
 

C.  Calculation of β c: 

(i)     For θo = θ1  i.e,        x = x` = 1 
From eq.(9) 
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let  
 

   F(k) = k3 – c2(k-1)    (15)  
then  
   F`(k) = 3k2 – c2 
                                                 = 0                 at                     
    
see Fig.(2) 
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Subs. in eq. (14), one can get 
 
 
and therefore, 
 
 
 
 
corresponds to one solution. 
 

(iii)  The general value of β (θo ≠ 0) 

 From eq. (9) one can write β as 
 
  
 
 
 
 

 
write   
 
Where k should be grater than 1, thus β can takes a form: 
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Fig. (2): The value of k in the case of θ = 0 
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where                     and γ has the boundary condition that,                                             
 
 
Now, let                                                                                                           (20) 
  
 

One can define Eqn. (19) as a function of k 
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From above, one can determine the k values as 
 
  
 
 
On Substituting the value of k in Eqn. (23), one can find 
 
 
 
 
 
Now, let  
 
both solutions Γ1, Γ2 > 0 should satisfy  
 
 

Fig. (3):  The relation between the F(k) and k. One solution corresponding to 
ε=2α2/3 
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These imply 
 
 
 
Therefore, one of them is excluded and the other is a unique one. i.e., there is 
only one solution at                , and this solution tends to the previous values  
as γ  0: 
  
 
 
This solution Γ = Γ(γ) may be obtained  explicitly as a power series in γ (note γ 
< ½ ). 
 
 
Thus, 
 
 
 
 
This determination of βc for any θo: θ1 ≥ θo ≥0. 
 
 For short times, i.e, high temperatures there exists only the constant 
solution x(τ) = 1, but when the temperature is lowered a new solutions arise for 
β ≥βc. For this solutions, two new branches emerge describing an oscillation to 
the other side of the well in the inverted potential. The constant path which is 
stable for high temperature becomes unstable for times β >βc. The solution of 
smaller amplitude is unstable while the other one stable [8 & 9]. 
 

D.  Classical action and fluctuation determinant: 

 Fortunately, not all extremely action paths has to be taken into account 
in semiclassical approximation [Eqn.(3)] for a given temperature since the 
corresponding classical actions are not always minima of S[x]. One gains from 
Eqn. (2) and Table (1) for the action of the classical paths 
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and for β >βc the action will be smaller than       . Therefore, as mentioned 
above, one has bifurcations at β =βc.  
Now, the finite part of determinant J using Eqn.(5) is: 

 
     J(finit)=  
 
 
 
 
 
 
for a general case, θo ≠ 0: 
 
 
 
 
 
 
 
but if θo = θ1 at x(τ) = 1 in the limit of η α, J cannot be evaluated according to 
Eqn.(5) and the semiclassical approximation breaks down.  
 
 
2. Conclusion: 

 Now, for high temperatures, β ≤ βc and given end points    (x, x` ), there 
is only one classical path with amplitude xm which is obtained from Eqn.(7) by 
choosing ε and βo according to the boundary conditions. In practice ε and βo 
have to be determined numerically. By virtue Eqn. (17) and (30) the 
semiclassical density matrix for high temperatures β < βc is given by 
 
 
 
For β < βc new classical paths may emerge, first for coordinate near the critical 
coordinate, determined by the solution of β. A part from a narrow region about 
the critical temperature, these trajectories are well separated in function space 
and the sum of Eqn.(3) contains the contribution of pathes.  
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 As it is shown above the simple semiclassical approximation breaks 
down in a narrow region around the barrier top near the critical xc and inverse 
temperature β. Only there, the semiclassical determination has to be improved 
due to the fact that the relevant classical paths are not well separated in function 
space. Furthermore, this analysis also gives the precise conditions for the 
validity of the Eqn. (33). The author suggests that further research work needed 
in order to improve this. 
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