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Understanding the microstructural evolution in metallic alloys helps to 
control their properties and improve their performance in industrial 
applications.  The emphasis of our study is the coarsening mechanisms of 
lamellar structures. Coarsening of lamellar structure is modeled numerically 
using Monte Carlo Potts method.  The initial microstructure consists of 
alternating lamellae of phase A and phase B with the spacing proportional to 
their volume fraction. Faults are introduced to the lamellae to induce 
instability in the system. We find that an isotropic lamellar structure 
degenerates via edge spheroidization and termination migration into nearly 
equiaxed grains with a diameter which is 2 to 3 times larger than the original 
lamellar spacing.  The duration of this process is comparable with the time it 
would take Ostwald ripening to produce grains of the same size.  Eventually 
grain growth reaches the asymptotic regime of coarsening described by a 
power-law function of time.  Lamellae with anisotropic grain boundaries 
coarsen more slowly and via discontinuous coarsening mechanism. This 
produces larger grains upon degeneration of lamellae.  Discontinuous 
coarsening was observed in lamellar alloys as well as termination migration. 
 
     

1. Introduction: 

Microstructural evolution due to aging determines the long-term 
reliability of materials in practical applications.  The ability to control the 
properties of materials and enhance their performance depends upon the 
development of material models. Various numerical models have been 
developed to simulate the microstructural evolution of materials.  The 
simulation methods can be classified into four specific groups [1]. The first one 
is made up of Voronoi [2] and modified Voronoi [3, 4] methods.  The second 
contains curvature-driven grain  growth [5 - 8] simulations, followed by 
continuum thermodynamics methods such as finite different solutions of the 
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Cahn-Hilliard equation, phase field models [9], and diffusion equation [10 - 
12]. The last one consists of cellular automata models. Each of these 
simulations will be summarized briefly. 

  

Voronoi and modified Voronoi techniques simulate grain 
microstructures in two dimensions by defining nucleation rates and grain 
boundary velocity. The nucleated grain growth continues until the grains 
impinge on other growing grains. Although theses methods are applicable to the 
study of nucleation and growth conditions, they fail to give kinetic information.  

 

Curvature-driven grain growth simulations are based on the relationship 
between the grain boundary curvature and its velocity.  In this method, discrete 
segments of the grain boundary are moved with velocities proportional to their 
curvature.  Line tension and vertex driven techniques [13] suppose straight line 
boundaries which exert a force proportional to their length at vertices.  The 
vertices move as a result of the total line tension force acting on them. 
Although this method is successful at modeling normal grain growth, it fails to 
model Ostwald ripening or grain growth in the presence of temperature 
gradients. 

 

Continuum thermodynamic models have been successful for simulating 
several microstructural evolution problems; however, all thermodynamic and 
kinetic characteristics must be modified into the model. 

 

Cellular automata models utilize a pixilated microstructure. The local 
structure change depends on the state of pixels near the considered pixel. This 
method requires the development of rules based on observed phenomenological 
characteristics. 

 

All four simulation methods depend on knowing the system’s 
phenomenological characteristics. In comparison, the thermodynamic and 
kinetic characteristics are inherent to the Monte Carlo Potts model.  There is no 
need to incorporate the material behavior such as velocity of grain boundary or 
the function of free energy into the model.  This model was developed for one-
phase systems, two-phase solid-liquid systems and two-phase solid-solid 
systems [14 - 17]. 

 

In the present study, the coarsening behavior of lamellar structure of 
metallic alloys is simulated using the Monte Carlo Potts Model.  These alloys 
are important for high-temperature engineering applications. For example, Sn-
Pb alloys are widely used as soldering materials in the packages of 
semiconductors and communication materials [18]. Moreover, they are used in 
printed circuits and they are applied in interconnections of Si chip-to-substrates 
such as the multichip modules, the thermal conduction module and the tap-
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automated-bonding [19]. The simulation results of both isotropic and 
anisotropic coarsening of lamellar structure are discussed and compared to each 
other and to simulation results of fine-grained structure of metallic alloys. 

 

2. Different Mechanisms Of Grain Growth: 

Most metallic alloys are polycrystalline materials which consist of 
small grains which are “glued” together by interatomic forces.  In single-phase 
alloys grains are attached by grain boundaries. In two-phase alloys grains of 
different phases are adjoined by interphase boundaries. Polycrystals are 
intrinsically unstable. The instability is introduced by grain boundary 
curvatures which lead to grain boundary migration. This boundary migration 
leads to minimization of interfacial energy and increasing the grain size. The 
grains grow via several mechanisms described as follows. 
 

2.1. One-phase alloys 

In single-phase alloys the grain boundary velocity v~ d&  is proportional 
to the driving force P (free energy difference across curved interfaces). 

Assuming that P is proportional to the grain size: -1d α P , we get d~t1/2 .  This 
shows that the “classical” value of  grain growth exponent for pure metals or 
ceramics is 2 [20 - 22]. 

 
Much larger grain growth exponents, sometimes observed in laboratory 

experiments [23, 24] are believed to be due to non-linear relationship between 

the boundary velocity and the driving force, mP α v , where m is a constant 
[23].  This gives a more general result n=m+1.  For example, in the case of 
aluminium, 12  m ≈  at T=0.4Tm, and approaches m=1 as the temperature 
approaches melting temperature. 

 
Impurities is another which can increase n [25]. They tend to 

concentrate in the moving grain boundaries affecting the driving force and 
therefore the grain growth rate. 

 

2.2. Two-phase alloys: 

Before a discussion of two-phase systems, we would like to note that 
the term “grain growth” is traditionally used for one-phase systems where 
grains grow via grain boundary migration. Growth of second-phase particles is 
usually referred to as “coarsening” or “Ostwald ripening”. Sometimes, 
especially when both grain growth and coarsening take place at the same time, 
the term  “grain growth” and “coarsening” are used in a broader sense. 
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The coarsening exponent for Ostwald ripening of particles in 
polycrystalline matrix is n=3 in case of volume diffusion controlled growth 
[26,27], n=4 if the grain growth is controlled by grain boundary diffusion [28] 
and n=5 for diffusion on dislocations [28].   

 
Grain growth in the major phase often occurs simultaneously with 

Ostwald ripening.  The coupling between the two processes can be described as 
follows.  If the second-phase particles were stable, grain growth in the major 
phase will stop as soon as the grain size reaches some maximum value which is 
proportional to the size of the particles (Zener pinning, see [29]).  If the second-
phase particles undergo Ostwald ripening, the grains of the major phase can 
grow as well.  Hillert [30] and Gladman [31] proposed that after a sufficiently 
long time, grain growth in two-phase systems in which both phases grow 
simultaneously is controlled by Ostwald ripening of the dispersed particles and 
is coupled through Zener pinning.  There is evidence for such coupled growth 
in laboratory experiments [32 - 39] and in numerical simulations [40, 17].  The 
grain growth exponents for both phases are the same and correspond to one of 
the three mechanisms of Ostwald ripening described above. 

 

3. Review Of Coarsening Mechanisms: 

3.1. Direct cylinderization: 

The direct cylinderiztion process is driven by the curvature between the 
plate edge and the flat surface. During this process, mass transfer from the edge 
to the flat surface produces ridges. As a result of that additional transfer of 
mass the ridges grow together into a circular cylinder. If the mass transfer is 
controlled by volume diffusion, then the cylinders grow by Ostwald ripening, in 
which large cylinders grow more at the expense of smaller ones. However, if 
the mass transfer is controlled by interfacial diffusion, then each cylinder is 
subject to a Rayleigh instability of sufficient wavelength along its length and 
will break up into a row of spheres [41]. 

 
 3.2. Edge spheroidization: 

Finite plates with large aspect ratios are susceptive to this kind of 
instability. This process starts with edge recession and the formation of ridges 
similar to the direct cylinderization process. Edge recession drives the ridge 
growth and also gives sufficient time for the development and growth of the 
perturbations along the ridge length. At sufficiently large wavelength of 
perturbations, the radius of curvature of the ridge is unstable against the 
perturbations. This develops the perturbations growth and eventually leads to 
the decomposition into a row of spheres.   
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3.3. Thermal groove theory: 

Thermal groove due to the presence of sub-boundaries in the lamellae is 
another type of instability. These sub-boundaries can be introduced into the 
lamellar structure by deformation or phase transformation processes. Mullins 
[42, 43] developed the theory of thermal grooving for an internal grain 
boundary that intersects an interface interphase. Initially, a local equilibrium 
will be established at each of the triple junctions by balancing the interfacial 
tensions. This introduces curvatures into the lamellar interfaces and chemical 
potential gradients.  Diffusion of atoms leaving the curved groove is controlled 
by these gradients. This will cause the grooves to grow, and eventually the 
lamellar plates break up.  If the ratio of the subboundary and phase boundary 
energy is large, then the thermal groove mechanism (boundary splitting) 
dominates. However, small values of this ratio favor cylinderization. Also, 
large aspect ratios favor boundary splitting. 

 
3.4. Fault migration theory: 

Cline [44] discussed the role of faults in the rod composite. These 
faulted rods include two kinds of faults: terminations which decrease the 
number of the rods during growth and branches which increase the number of 
rods.  The surface curvature is a maximum at the termination and a minimum at 
the branch. Diffusion of rod atoms is driven by chemical potential due to 
curvature differences between the branch and the termination. The terminations 
and the faults migrate in opposite directions so that they may collide, which 
cause the elimination of both faults. While the faults migrate toward each other, 
the rods left behind become bulged to conserve materials.  Both types of faults 
were observed in a NiAl-Cr eutectic [44] and in an Al3 Ni-Al eutectic [45]. 
 
3.5. Discontinuous coarsening: 

Discontinuous coarsening occurs by grain boundary migration leaving a 
coarser lamellar structure. Discontinuous coarsening is expected to be more 
dominant at lower temperatures and thinner lamellar spacing. Discontinuous 
coarsening was observed in Co-Si, Cu-In and Ni-In [46] and TiAl/Ti3 Al [47, 
48, 49]. 
 
4. Role of Initial Conditions: 

Initial conditions and inadequate coarsening time could also be the 
reason of an unusual large value of n.  For example, a thin initial particle size 
can significantly slow down the coarsening rates in the early stages of Ostwald 
ripening [50].  Evolution of Eutectoid structure is an even more complicated 
process. They experience diverse morphological changes before nearly 
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equiaxed grains develop and conventional Ostwald ripening is established [41, 
47, 51 - 54]. Additional complications are due to the fact that crystallographic 
orientations of lamellar are usually not random but such as to minimize the 
surface energy [52, 55].  This contributes substantially to the stability of 
eutectoid structures and can also affect Ostwald ripening after degeneration of 
lamellae. It is unclear if the asymptotic regime of conventional Ostwald 
ripening has ever been reached in any laboratory experiments on coarsening of 
eutectoid structures and it is indistinguishable if it happened in Yamazaki et 
al.’s experiments [56]. An indirect  indication that the lamellar structures 
generated by an eutectoid phase transformation is rather a special type of initial 
conditions (including geometry, elastic stress, and crystallographic 
orientations) is that coarsening in an analogue aggregate, CaTiO3-FeO, which 
was produced mechanically showed “normal” values of n, from 2.2 to 3.5 [57]. 
 

5. Numerical Simulations: 

5.1. The model: 

Coarsening of eutectoid lamellae with isotropic or anisotropic grain 
boundary energies in metallic alloys is systematically investigated with the help 
of Monte Carlo Potts model [1, 14 - 17, 58, 59]. The model has to be modified 
to simulate correctly coarsening of anisotropic grains. The problem is that 
without any modification of the numerical algorithm, dissolution of anisotropic 
grains produces anisotropic migrating atoms which is physically meaningless 
(and also gives meaningless results). To solve this problem the dissolved atoms 
need to be treated as follows. 

 
Each site is given a random number (spin) between 1 and Q-1.  If a site 

represents a dissolved atom (it is surrounded by sites of the other phase) it is 
given spin Q=100 or -100 depending on which phase it belongs to.  In isotropic 
coarsening, the grain boundary energies are the same. Thus, for any pair of 
sites, different spins result in an interfacial energy of unity and same spins 
result in an interfacial energy of zero. In anisotropic coarsening, the grain 
boundary energies are not the same. In our model the energy of the vertical 
boundary is three times the energy of the horizontal boundary. Since single 
lattice sites have only one state, they coalesce when they meet single lattice site 
of the same phase. If a dissolved atom of one phase touches a grain or single 
site of the other phase, then the spin exchange rule is applied. If it touches a 
grain of the same phase, then the spin flip rule is applied. 

 
The simulations presented in this paper were initialized using 400×400 

site square lattice. Each of the 160,000 lattice sites images a group of atoms 
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with a unique orientation (spin). The total number of spins used in all our 
simulations was Q=100. The initial microstructure used in this study was 
generated by arranging a stack of alternating parallel lamellae of  phase A and 
phase B with spacing proportional to the volume fraction of both phases. Faults 
are introduced to the lamellae to induce instability in the system. The resulting 
microstructure is referred to as lamellar structure.   

 

5.2. Simulation results: 

Lamellae with isotropic grain boundaries coarsen via termination 
migration and edge spheroidization mechanisms into nearly equiaxed grains 
[58]. Figure (1) is a plot of the average grain area as a function of time when 
the volume fraction of the second phase (phase B) is 30% and 50%. We see that 
the average grain area decreases as the lamellar degenerate. When the grain 
area reaches its minimum value, the lamellae are completely replaced by 
equiaxed grains whose sizes are determined by taking the square root of the 
grain area. The grain size of the degenerated lamellae is 2 to 3 times larger than 
the initial lamellar spacing weakly depending on the distance between faults. 
The duration of the degeneration process is comparable with the time it would 
take the conventional Ostwald ripening to form grains of similar size starting 
with negligibly small grains. After degeneration of lamellar structure, the 
equiaxed grains display grain growth and quickly reach the asymptotic regime 
described by the power law function d ~ t1/4. These results have no dependence 
on the volume fraction of the second phase (phase B). 

 
Lamellae with anisotropic grain boundaries coarsen more slowly and via a 

different mechanism, discontinuous coarsening. The average grain area is 
plotted in Fig. (2) as a function of time. The grain size of the degenerated 
lamellae is 4 to 5 times larger than the original lamellar spacing. The 
coarsening is very slow compared with coarsening of lamellar with isotropic 
grain boundaries.  
 

6. Conclusion: 

The grain size of degenerated lamellae of phase A and phase B in 
metallic alloys is about 2 to 3 times larger than the initial lamellar spacing. The 
duration of this process is comparable with the time it would take Ostwald 
ripening to form grains of the same size starting with fine-grained structure.  
After degeneration of lamellae the grain growth quickly reaches the asymptotic 
regime of Ostwald ripening. Lamellae with anisotropic grain boundaries 
coarsen much slower and produce larger grains upon degeneration of lamellae 
(by a factor of 2). 
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Fig.(1): The mean grain area as a function of time for isotropic boundaries. The volume 
fraction of the second phase is 30% and 50%. The solid lines indicate 
coarsening of eutectoid lamellar structure with isotropic grain boundary 
energies. The dotted lines indicate grain growth in two-phase systems of 
isotropic grain boundaries starting with small grains. L is the horizontal 
distance between faults in cell units. A and B stand for the first phase (phase A) 
and the second phase (phase B) respectively. 

 



Egypt. J. Solids, Vol. (27), No. (2), (2004) 197

 
 

Fig.(2): The average grain area as a function of time for anisotropic boundaries. The 
volume fraction of the second phase is 30% and 50%.  The solid lines indicate 
coarsening of eutectoid lamellar structure with anisotropic grain boundary 
energies. The dotted lines indicate grain growth in two-phase systems of 
isotropic grain boundaries starting with small grains. The horizontal distance 
between faults is L=200.  A and B stand for the first phase (phase A) and the 
second phase (phase B), respectively. 
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